
Introduction to Machine Learning
Linear Regression & Optimization

Ashley Gao

William & Mary

September 09, 2024

William & Mary CSCI 416/516 September 09, 2024 1 / 40

Supervised Learning Setup

In supervised learning:
There is input G ∈ X, typically a vector of features (or covariates)
There is target C ∈ T (also called response, outcome, output, class)
Objective is to learn a function 5 : X → T such that C ≈ H = 5 (G) based
on the dataset D = {(G (8) , C (8))} for 8 = 1, 2, ..., # .

William & Mary CSCI 416/516 September 09, 2024 2 / 40

Linear Regression - Model

Model: In linear regression, we use a linear function of the features
G = (G1, ..., G�) ∈ R� to make prediction H of the target value C ∈ R:

H = 5 (G) =
∑
9

F 9G 9 + 1 (1)

H is the prediction
F is the weights
1 is the bias (or intercept)

w and b together are the parameters
We hope that our prediction is close to the target: H ≈ C.

William & Mary CSCI 416/516 September 09, 2024 3 / 40

What is Linear? 1 feature vs D features

If we have only 1 feature:
H = FG + 1 where F, G, 1 ∈ R
H is linear in G

If we have only � feature:
H = w>x + 1 where w, x ∈ R�
and 1 ∈ R
H is linear in G

Relation between the prediction H and inputs G is linear in both cases.

William & Mary CSCI 416/516 September 09, 2024 4 / 40

Linear Regression

We have a dataset D = {(G (8) , C (8))} for 8 = 1, 2, ..., # , where
G (8) = (G (8)1 , G

(8)
2 , ..., G

(8)
�
)> ∈ R� are the inputs (i.e. age, height)

C (8) ∈ R is the target or response (i.e. income)
Predict C (8) with a linear function of G (8)

C (8) ≈ H (8) = w>x + 1
Different (w, 1) combinations
define different lines
We want the best line (w, 1)
How to quantify “best"?

Relation between the prediction H and inputs G is linear in both cases.

William & Mary CSCI 416/516 September 09, 2024 5 / 40

Linear Regression - Loss Function

A loss function L(H, C) defines how bad it is if, for some example x, the
algorithm predicts H, but the target is actually C.
Squared error loss function:

L(H, C) = 1
2
(H − C)2 (2)

H − C is the residual, and we want to make this small in magnitude
1
2 factor is just to make the calculations convenient
Cost function: loss function averaged over all training examples

J (w, 1) = 1
2#

#∑
8=1
(H (8) − C (8))2 =

1
2#

#∑
8=1
(w>x (8) + 1 − C (8))2 (3)

Terminology varies. Some call “cost” empirical or average loss.
William & Mary CSCI 416/516 September 09, 2024 6 / 40

Vectorization

Notion-wise, 1
2#

∑#
8=1(H (8) − C (8))2 gets messy if we expand H (8) :

1
2#

#∑
8=1
(
�∑
9=1
(F 9G (8)9 + 1) − C

(8))2 (4)

The code equivalent is to compute the prediction using a for loop:

Excessive super/sub scripts are hard to work with, and Python loops are
slow, so we vectorize algorithms by expressing them in terms of vectors
and matrices.

w = (F1, ..., F�)>; x = (G1, ..., G�); H = w>x + 1 (5)
This is simpler and executes much faster:

H = =?.3>C (w, x) + 1 (6)
William & Mary CSCI 416/516 September 09, 2024 7 / 40

Vectorization

Why vectorize?
The equations, and the code, will be simpler and more readable. Gets rid
of dummy variables and indices!
Vectorized code is much faster

Cut down on Python interpreter overhead
Use highly optimized linear algebra libraries (hardware support)
Matrix multiplication very fast on GPU (Graphics Processing Unit)

Switching in and out of vectorized form is a skill you gain with practice
Some algorithms are easier to write/understand using for-loops and
vectorize later for performance

William & Mary CSCI 416/516 September 09, 2024 8 / 40

Vectorization

We can organize all the training examples into a design matrix ^ with
one row per training example, and all the targets into the target vector t.

Computing the predictions for the whole dataset:

William & Mary CSCI 416/516 September 09, 2024 9 / 40

Vectorization

Computing the squared error cost across the whole dataset:

y = ^w + 11;J =
1

2#
| |H − C | |2 (7)

Sometimes we use J = 1
2 | |H − C | |

2 without a normalizer. This would
correspond to the sum of losses, and not the averaged loss. The
minimizer does not depend on N (but optimization might!).
We can also add a column of 1’s to design matrix, combine the bias and
the weights, and conveniently write

Then, our predictions reduce to y = ^w.

William & Mary CSCI 416/516 September 09, 2024 10 / 40

Vectorization

We have defined a cost function. This is what we’d like to minimize.
Two commonly applied mathematical approaches:

Algebraic, e.g., using inequalities:
To show that I∗ minimizes 5 (I), show that ∀I, 5 (I) ≥ 5 (I∗)

Calculus: minimum of a smooth function (if it exists) occurs at a critical
point, i.e. point where the derivative is zero.

multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient).

Solutions may be direct or iterative
Sometimes we can directly find provably optimal parameters (e.g. set the
gradient to zero and solve in closed form). We call this a direct solution.
We may also use optimization techniques that iteratively get us closer to
the solution. We will get back to this soon.

William & Mary CSCI 416/516 September 09, 2024 11 / 40

Direct Solution: Calculus

Partial derivative: derivative of a multivariate function with respect to
one of its arguments.

m

mG1
5 (G1, G2) = lim

ℎ→0

5 (G1 + ℎ, G2) − 5 (G1, G2)
ℎ

(8)

To compute, take the single variable derivative, pretending the other
arguments are constant.
Example: partial derivatives of the prediction H

mH

mF 9
=

m

mF 9

©«
∑
9
′
F 9′G 9′ + 1

ª®¬ = G 9 (9)

mH

m1
=
m

m1

©«
∑
9
′
F 9′G 9′ + 1

ª®¬ = 1 (10)

William & Mary CSCI 416/516 September 09, 2024 12 / 40

Direct Solution: Calculus

For loss derivatives, apply the chain rule:

m (!)
mF 9

=
3 (!)
3H

m (H)
mF 9

=
3

3H

(
1
2
(H − C)2

)
G 9 = (H − C)G 9 (11)

m (!)
m1

=
3 (!)
3H

m (H)
m1

= H − C (12)

For cost derivatives, use linearity and average over data points.
Minimum must occur at a point where partial derivatives are zero.

m (�)
mF 9

=
1
#

#∑
8=1
(H (8) − C (8))G (8)

9
= 0 (13)

m (�)
m1

=
1
#

#∑
8=1

H (8) − C (8) = 0 (14)

if m(�)
mF9

≠ 0, you could reduce the cost by changing F 9
William & Mary CSCI 416/516 September 09, 2024 13 / 40

Direct Solution: Calculus

The derivation on the previous slide gives a system of linear equations,
which we can solve efficiently.
As is often the case for models and code, however, the solution is easier
to characterize if we vectorize our calculus.
We call the vector of partial derivatives the gradient
Thus, the gradient of 5 : R� → R, denoted ∇ 5 (w), is:(

m

mF1
5 (w), ..., m

mF�
5 (w)

)>
(15)

The gradient points in the direction of the greatest rate of increase.
Analogue of the second derivative (the Hessian matrix):
∇2 5 (w) ∈ R�×� is a matrix with [∇2 5 (w)]8, 9 = m2

mF8mF9
5 (w)

William & Mary CSCI 416/516 September 09, 2024 14 / 40

Feature Mapping (Basic Expansion)

The relation between the input and output may not be linear.

We can still use linear regression by mapping the input features to
another space using feature mapping (or basis expansion)
k(x) : R� → R3 and treat the mapped features in R3 as the input of a
linear regression procedure.
Let us see how it works when G ∈ R and we use a polynomial feature
mapping.

William & Mary CSCI 416/516 September 09, 2024 15 / 40

Feature Mapping (Basic Expansion)

If the relationship doesn’t look linear, we can fit a polynomial.

Fit the data using a degree-" polynomial function of the form:

H = F0 + F1G + F2G
2 + ... + F"G" =

"∑
8=0

F8G
8 (16)

Here the feature mapping is k(G) = [1, G, G2, ..., G"]>

We can still use linear regression to find w since H = k(G)> is linear in
F0, F1, ..., because the coefficients are still linear!

William & Mary CSCI 416/516 September 09, 2024 16 / 40

Polynomial Feature Mapping with M = 0

William & Mary CSCI 416/516 September 09, 2024 17 / 40

Polynomial Feature Mapping with M = 1

William & Mary CSCI 416/516 September 09, 2024 18 / 40

Polynomial Feature Mapping with M = 3

William & Mary CSCI 416/516 September 09, 2024 19 / 40

Polynomial Feature Mapping with M = 9

William & Mary CSCI 416/516 September 09, 2024 20 / 40

Model Complexity and Generalization

Underfitting ("=0): model is too simple→ does not fit the data.
Overfitting ("=9): model is too complex→ fits perfectly.

Good model ("=3): Achieves small test error (generalizes well).

William & Mary CSCI 416/516 September 09, 2024 21 / 40

Model Complexity and Generalization

As " increases, the magnitude of coefficients gets larger.
For " = 9, the coefficients have become finely tuned to the data.
Between data points, the function exhibits large oscillations.

William & Mary CSCI 416/516 September 09, 2024 22 / 40

Regularization

The degree " of the polynomial controls the model’s complexity.
The value of " is a hyperparameter for polynomial expansion, just like :
in KNN. We can tune it using a validation set.
Restricting the number of parameters is a crude approach to controlling
the model complexity.
Another approach: keep the model large, but regularize it

Regularizer: a function that quantifies how much we prefer one hypothesis
vs. another

William & Mary CSCI 416/516 September 09, 2024 23 / 40

!2 or ;2 Regularization

We can encourage the weights to be small by choosing as our regularizer
the !2 penalty.

R(w) = 1
2
| |w | |22 =

1
2

∑
9

F2
9 (17)

Note: To be precise, the !2 norm is Euclidean distance, so we’re
regularizing the squared !2 norm.

The regularized cost function makes a tradeoff between fit to the data and
the norm of the weights.

JA46 (w) = J (w) + _R(w) = J (w) +
_

2

∑
9

F2
9 (18)

If you fit training data poorly, J is large. If your optimal weights have
high values, R is large. Large _ penalizes weight values more.
Like " , _ is a hyperparameter we can tune with a validation set.

William & Mary CSCI 416/516 September 09, 2024 24 / 40

Conclusion So Far

Linear regression exemplifies recurring themes of this course:
choose a model and a loss function
formulate an optimization problem
solve the minimization problem using one of two strategies

direct solution (set derivatives to zero)
gradient descent (next topic)

vectorize the algorithm, i.e. represent in terms of linear algebra
make a linear model more powerful using features
improve the generalization by adding a regularizer

William & Mary CSCI 416/516 September 09, 2024 25 / 40

Slight Digression

William & Mary CSCI 416/516 September 09, 2024 26 / 40

Gradient Descent

Now let’s see a second way to minimize the cost function which is more
broadly applicable: gradient descent.
Many times, we do not have a direct solution: Taking derivatives of J
w.r.t w and setting them to 0 doesn’t have an explicit solution.
Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.
We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of the steepest descent.

William & Mary CSCI 416/516 September 09, 2024 27 / 40

Gradient Descent

Observe:
if mJ
mF9

> 0, then increasing F 9 increases J
if mJ
mF9

< 0, then increasing F 9 decreases J
The following update always decreases the cost function for small
enough U unless mJ

mF9
= 0:

F 9 ← F 9 − U
mJ
mF 9

(19)

U > 0 is a learning rate (or step size). The larger it is, the faster w
changes.

We’ll see later how to tune the learning rate, but values are typically small,
e.g. 0.01 or 0.0001.

William & Mary CSCI 416/516 September 09, 2024 28 / 40

Gradient Descent

This gets its name from the gradient:

∇wJ =
mJ
mw

=

(
mJ
mF1

, ...,
mJ
mF�

)
(20)

This is the direction of the fastest change in J .
Update rule in vector form:

w ← w − UmJ
mw

(21)

And for linear regression we have:

w ← w − U
#

#∑
8=0
(H (8) − C (8))x (8) (22)

So gradient descent updates w in the direction of fastest decrease.
Observe that once it converges, we get a critical point. i.e. mJ

mw = 0
William & Mary CSCI 416/516 September 09, 2024 29 / 40

Gradient Descent

The squared error loss of linear regression is a convex function.
Even for linear regression, where there is a direct solution, we sometimes
need to use GD.
Why gradient descent, if we can find the optimum directly?

GD can be applied to a much broader set of models
GD can be easier to implement than direct solutions
For regression in high-dimensional space, GD is more efficient than direct
solution

Each GD update costs O(#�)
Or less with stochastic GD (SGD, in a few slides)
Huge difference if � � 1

William & Mary CSCI 416/516 September 09, 2024 30 / 40

Gradient Descent Under the !2 Regularization

Gradient descent update to minimize J :

w ← w − UmJ
mw

(23)

The gradient descent update to minimize the !2 regularized cost J + _R
results in weight decay:

w ← w − U m

mw
(J + _R) (24)

w − U m

mw
(J + _R) = w − U

(
mJ
mw
+ _mR

mw

)
(25)

w − U
(
mJ
mw
+ _mR

mw

)
= w − U

(
mJ
mw
+ _w

)
(26)

w ← (1 − U_)w − UmJ
mw

(27)

William & Mary CSCI 416/516 September 09, 2024 31 / 40

Learning Rate (Step Size)

In gradient descent, the learning rate U is a hyperparameter we need to
tune. Here are some things that can go wrong:

Good values are typically between 0.001 and 0.1. You should do a grid
search if you want good performance.

William & Mary CSCI 416/516 September 09, 2024 32 / 40

Training Curve

To diagnose optimization problems, it’s useful to look at training curves:
plot the training cost as a function of iteration.

Warning: in general, it’s very hard to tell from the training curves
whether an optimizer has converged. They can reveal major problems,
but they can’t guarantee convergence.

William & Mary CSCI 416/516 September 09, 2024 33 / 40

Stochastic Gradient Descent

So far, the cost functionJ has been the average loss over the training
examples:

J ()) = 1
#

#∑
8=1
L (8) = 1

#

#∑
8=1
L(H(x (8) ,)), t (8)) (28)

) denotes the parameters; e.g., in linear regression,) = (w, 1)
By linearity,

mJ
m)

=
1
#

#∑
8=1

mL (8)
m)

(29)

Computing the gradient requires summing over all of the training
examples. This is known as batch training.
Batch training is impractical if you have a large dataset # � 1 (e.g.
millions of training examples)!

William & Mary CSCI 416/516 September 09, 2024 34 / 40

Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

Choose 8 uniformly at random;
) ←) − U mL (8)

m)

Cost of each SGD update is independent of #!
SGD can make significant progress before even seeing all the data!
Mathematical justification: if you sample a training example uniformly at
random, the stochastic gradient is an unbiased estimate of the batch
gradient:

E

[
mL (8)
m)

]
=

1
#

#∑
8=1

mL (8)
m)

=
mJ
m)

(30)

William & Mary CSCI 416/516 September 09, 2024 35 / 40

Stochastic Gradient Descent

Problems with using a single training example to estimate gradient:
Variance in the estimate may be high
We can’t exploit efficient vectorized operations

Compromise approach:
Compute the gradients on a randomly chosen medium-sized set of training
M ⊂ {1, ..., #} examples, called a mini-batch.

Stochastic gradients computed on larger mini-batches have smaller
variances.
The mini-batch size |M| is a hyperparameter that needs to be set.

Too large: requires more compute; e.g., it takes more memory to store the
activations, and longer to compute each gradient update
Too small: can’t exploit vectorization, has high variance
reasonable value might be |M| = 100.

William & Mary CSCI 416/516 September 09, 2024 36 / 40

Stochastic Gradient Descent

Batch gradient descent moves directly downhill (locally speaking).
SGD takes steps in a noisy direction, but moves downhill on average.

William & Mary CSCI 416/516 September 09, 2024 37 / 40

SDG Learning Rate

In stochastic training, the learning rate also influences the fluctuations
due to the stochasticity of the gradients.
Stochasticity, in the context of machine learning, refers to the introduction
of randomness or probabilistic elements into the learning process.

Typical strategy:
Use a large learning rate early in training so you can get close to the
optimum
Gradually decay the learning rate to reduce the fluctuations

William & Mary CSCI 416/516 September 09, 2024 38 / 40

When Are Critical Points Optimal?

Gradient descent finds a critical point, but it may be a local optima.
Convexity is a property that guarantees that all critical points are global
minima.

William & Mary CSCI 416/516 September 09, 2024 39 / 40

Conclusion

In this lecture, we looked at linear regression, which exemplifies a
modular approach that will be used throughout this course:

choose a model describing the relationships between variables of interest
(linear)
define a loss function quantifying how bad the fit to the data is (squared
error)
choose a regularizer to control the model complexity/overfitting (!2, ! ?
regularization)
fit/optimize the model (gradient descent, stochastic gradient descent,
convexity)

By mixing and matching these modular components, we can obtain new
ML methods.

William & Mary CSCI 416/516 September 09, 2024 40 / 40

