Introduction to Machine learning Logistic Regression, Multi-class Classification

Ashley Gao

William & Mary

September 18, 2024

- Classification: predicting a discrete-valued target
 - Binary classification: predicting a binary-valued target
 - Multiclass classification: predicting a discrete (> 2)-valued target
- Examples of binary classification:
 - predict whether a patient has a disease, given the presence or absence of various symptoms
 - classify e-mails as spam or non-spam
 - predict whether a financial transaction is fraudulent

Overview

- Binary linear classification
 - classification: given a D-dimensional input $x \in \mathbb{R}^D$ predict a discrete-valued target
 - binary: predict a binary target $t \in \{0, 1\}$
 - Training examples with *t* = 1 are called positive examples, and training examples with *t* = 0 are called negative examples.
 - $t \in \{0, 1\}$ or $t \in \{+1, -1\}$ is for computational convenience.
 - linear: model prediction *y* is a linear function of *x*, followed by a threshold *r*

$$z = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b} \tag{1}$$

$$y = \begin{cases} 1 & z \ge r \\ 0 & z < r \end{cases}$$
(2)

Some Simplification

- Eliminating the threshold
 - We can assume without loss of generality (WLOG) that the threshold r = 0:

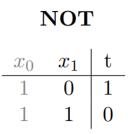
$$\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{b} \ge \boldsymbol{r} \Longleftrightarrow \boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{b} - \boldsymbol{r} \ge \boldsymbol{0}$$
(3)

- Eliminating the bias
 - Add a dummy feature x0 which always takes the value 1. The weight $w_0 = b$ is equivalent to a bias (same as linear regression)
- Simplified model
 - Receive input $\mathbf{x} \in \mathbb{R}^{D+1}$ with $x_0 = 1$:

$$z = \mathbf{w}^{\top} \mathbf{x}$$
(4)
$$\mathbf{w} = \begin{cases} 1 & z \ge r \\ 0 & z < r \end{cases}$$
(5)

- Let's consider some simple examples to examine the properties of our model
- Let's focus on minimizing the training set error, and forget about whether our model will generalize to a test set.

Some Examples



- Suppose this is our training set, with the dummy feature x_0 included
- Which conditions on w0, w1 guarantee perfect classification?
 - When $x_1 = 0$, need: $z = w_0 x_0 + w_1 x_1 \ge 0 \iff w_0 \ge 0$
 - When $x_1 = 1$, need: $z = w_0 x_0 + w_1 x_1 < 0 \iff w_0 + w_1 < 0$
- Possible solution: $w_0 = 1, w_1 = -2$
- Is this the only solution?

Some Examples

 x_0

 x_1 0

AND

x_2		$z = w_0 x_0 + w_1 x_1 + w_2 x_2$
0	0	need: $w_0 < 0$
1	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	need: $w_0 + w_2 < 0$
0 1 0 1		need: $w_0 + w_1 < 0$
-	-	need: $w_0 + w_1 + w_2 \ge 0$

Example solution: $w_0 = -1.5, w_1 = 1, w_2 = 1$

3

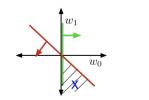
7/44

• □ > • □ > • □ > •

- Training examples are points
- Weights (hypotheses) w can be represented by half-spaces. $H_+ = \{x : w^{\top}x \ge 0\}, H_- = \{x : w^{\top}x < 0\}$
 - The boundaries of these half-spaces pass through the origin (why?)
 - Decision boundary: $\{x : w^{\top}x = 0\}$
 - In 2-D, it's a line, but in high dimensions it is a hyperplane
- If the training examples can be perfectly separated by a linear decision rule, we say data is linearly separable.

The Geometric Picture

• Weight space



 $w_0 \ge 0$ $w_0 + w_1 < 0$

- Weights (hypotheses) *w* are points
- Each training example x specifies a half-space w must lie in to be correctly classified: $w^{\top}x \ge 0$ if t = 1.
- For NOT example:

•
$$x_0 = 1, x_1 = 0, t = 1 \Longrightarrow (w_0, w_1) \in \mathbf{w} : w_0 \ge 0$$

•
$$x_0 = 1, x_1 = 1, t = 0 \Longrightarrow (w_0, w_1) \in w : w_0 + w_1 < 0$$

• The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible, otherwise it is infeasible.

William & Mary

Summary — Binary Linear Classifiers

• Summary: Targets $t \in \{0, 1\}$, inputs $\mathbf{x} \in \mathbb{R}^{D+1}$ with $x_0 = 1$, and model is defined by weights \mathbf{w} and

$$z = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}$$
(6)
$$y = \begin{cases} 1 & z \ge r \\ 0 & z < r \end{cases}$$
(7)

- How can we find good values for *w*?
- If the training set is linearly separable, we could solve for *w* using linear programming
 - We could also apply an iterative procedure known as the perceptron algorithm (but this is primarily of historical interest).
- If it's not linearly separable, the problem is harder
 - Data is almost never linearly separable in real life.

Towards Logistic Regression

 $\langle \Box \rangle \langle \overline{\Box} \rangle$

- Instead: define loss function then try to minimize the resulting cost function
 - Recall: cost is loss averaged (or summed) over the training set
- Seemingly obvious loss function: 0-1 loss

$$\mathcal{L}_{0,1}(y,t) = \begin{cases} 0 & y = t \\ 1 & y \neq t \end{cases}$$

$$\mathcal{L}_{0,1}(y,t) = \mathbb{I}(y \neq t)$$
(8)
(9)

• Usually, the cost \mathcal{J} is the averaged loss over training examples; for 0-1 loss, this is the misclassification rate:

$$\mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y^{(i)} \neq t^{(i)})$$
(10)

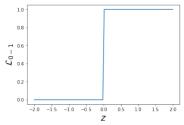
- Problem: how to optimize? In general, a hard problem (can be NP-hard)
- This is due to the step function (0-1 loss) not being nice (continuous/smooth/convex etc)

Attempt 1: 0-1 loss

- Minimum of a function will be at its critical points.
- Let's try to find the critical point of 0-1 loss
- Chain rule:

$$\frac{\partial \mathcal{L}_{0,1}}{\partial w_j} = \frac{\partial \mathcal{L}_{0,1}}{\partial z} \frac{\partial z}{\partial w_j} \tag{11}$$

• But $\frac{\partial \mathcal{L}_{0,1}}{\partial z}$ is zero everywhere it's defined!



• $\frac{\partial \mathcal{L}_{0,1}}{\partial w_j} = 0$ means that changing the weights by a very small amount probably has no effect on the loss \implies Almost any point has 0 gradient!

William & Mary

CSCI 416/516

- Sometimes we can replace the loss function we care about with one which is easier to optimize. This is known as relaxation with a smooth surrogate loss function.
- One problem with $\mathcal{L}_{0,1}$: defined in terms of final prediction, which inherently involves a discontinuity
- Instead, define loss in terms of $w^{\top}x$ directly
 - Redo notation for convenience: $z = w^{\top} x$

• We already know how to fit a linear regression model. Can we use this instead?

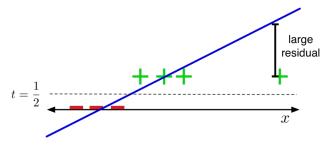
$$z = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} \tag{12}$$

$$\mathcal{L}_{SE} = \frac{1}{2}(z-t)^2$$
(13)

- Doesn't matter that the targets are actually binary. Treat them as continuous values.
- For this loss function, it makes sense to make final predictions by thresholding *z* at 0.5

Attempt 2: Linear Regression

• The problem:



- The loss function hates when you make correct predictions with high confidence!
- If t = 1, it's more unhappy about z = 10 than z = 0.

Attempt 3: Logistic Activation Function

- There's obviously no reason to predict values outside [0, 1]. Let's squash *y* into this interval.
- The logistic function is a kind of sigmoid, or S-shaped function:

$$\sigma(z) = \frac{1}{1 + e^{-z}} \tag{14}$$

• A linear model with a logistic nonlinearity is known as log-linear:

$$z = \boldsymbol{w}^{\top} \boldsymbol{x} \tag{15}$$

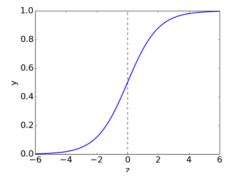
$$y = \sigma(z) \tag{16}$$

$$\mathcal{L}_{SE} = \frac{1}{2}(y-t)^2$$
(17)

• Used in this way, σ is called an activation function.

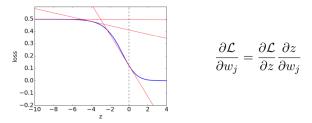
William & Mary

Attempt 3: Logistic Activation Function



Attempt 3: Logistic Activation Function

• The problem: (plot of \mathcal{L}_{SE} as a function of *z*, assuming *t* = 1)



- For $z \ll 0$, we have $\sigma(z) \approx 0$.
- $\frac{\partial \mathcal{L}}{\partial z} \approx 0$ (check!) $\Longrightarrow \frac{\partial \mathcal{L}}{\partial w_j} \approx 0 \Longrightarrow$ derivative w.r.t. w_j is small $\Longrightarrow w_j$ is like a critical point
- If the prediction is really wrong, you should be far from a critical point (which is your candidate solution).

Logistic Regression

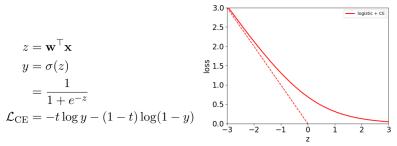
- Because $y \in [0, 1]$, we can interpret it as the estimated probability that t = 1. If t = 0, then we want to heavily penalize $y \approx 1$.
- The people who were 99% confident a certain presidential candidate would win were much more wrong than the ones who were only 90% confident, given that the person didn't win.
- Cross-entropy loss (aka log loss) captures this intuition:

$$\mathcal{L}_{CE}(y,t) = \begin{cases} -\log y & \text{if } t = 1 \\ -\log(1-y) & \text{if } t = 0 \end{cases}$$

$$= -t\log y - (1-t)\log(1-y) \begin{bmatrix} y \\ y \end{bmatrix}_{1}^{4} \begin{bmatrix} t \\ t = 1 \end{bmatrix}$$

Logistic Regression

• Logistic regression:



Plot is for target t = 1.

-

< D > < P > < P > < P > < P >

Logistic Regression - Numerical Instabilities

- If we implement logistic regression naively, we can end up with numerical instabilities.
- Consider: t = 1 but you're really confident that $z \ll 0$
- If *y* is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$y = \sigma(z) \Rightarrow y \approx 0$$
 (18)

$$\mathcal{L}_{CE} = -t\log y - (1-t)\log(1-y) \tag{19}$$

Logistic Regression - Numerical Stable Version

• Instead, we combine the activation function and the loss into a single logistic-cross-entropy function

$$\mathcal{L}_{LCE} = \mathcal{L}_{CE}(\sigma(z), t) = -t\log(\frac{1}{1+e^{-z}}) - (1-t)\log(1-\frac{1}{1+e^{-z}})$$
(20)
$$\mathcal{L}_{LCE} = t\log(1+e^{-z}) + (1-t)\log(1+e^{-z})$$
(21)

$$\mathcal{L}_{LCE} = z - zt + \log(1 + e^{-z}) \tag{22}$$

• Equivalently,

$$\mathcal{L}_{LCE} = t \log(1 + e^{-z}) + (1 - t) \log(1 + e^{z})$$
(23)

- How do we minimize the cost \mathcal{J} for logistic regression? No direct solution.
 - Taking derivatives of \mathcal{J} w.r.t. w and setting them to 0 doesn't have an explicit solution.
- However, the logistic loss is a convex function in *w*, so let's consider the gradient descent method/
 - Recall: we initialize the weights to something reasonable and repeatedly adjust them in the direction of the steepest descent.
 - A standard initialization is w = 0.

Gradient of Logistic Loss

• Back to logistic regression:

$$\mathcal{L}_{CE}(y,t) = -t\log y - (1-t)\log(1-y)$$
 (24)

$$y = \frac{1}{1 + e^{(-z)}}, z = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}$$
(25)

$$\frac{\partial \mathcal{L}_{CE}}{\partial w_j} = \frac{\partial \mathcal{L}_{CE}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w_j}$$
(26)

$$\frac{\partial \mathcal{L}_{CE}}{\partial w_j} = \left(-\frac{t}{y} + \frac{1-t}{1-y}\right) \cdot y(1-y) \cdot x_j = (y-t)x_j \tag{27}$$

• Gradient descent update to find the weights of logistic regression:

$$w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{J}}{\partial w_j} = w_j - \frac{\alpha}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) x^{(i)}$$
(28)

CSCI 416/516

Multiclass Classification and Softmax Regression

- Classification: predicting a discrete-valued target
 - Binary classification: predicting a binary-valued target
 - Multiclass classification: predicting a discretev(> 2)-valued target
- Examples of multi-class classification
 - predict the value of a handwritten digit
 - classify e-mails as spam, travel, work, personal

• Classification tasks with more than two categories:

- Targets form a discrete set $\{1, ..., K\}$.
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:
 - Entry *k* is 1, the other entries are all 0's.
 - *k* is not to be confused with *K*.

$$\boldsymbol{t} = (0, ..., 0, 1, 0, ..., 0) \in \mathbb{R}^{K}$$
(29)

Multiclass Linear Classification

- We can start with a linear function of the inputs.
- Now there are *D* input dimensions and *K* output dimensions, so we need *K* × *D* weights, which we arrange as a weight matrix *W*.
- Also, we have a K-dimensional vector b of biases.
- A linear function of the inputs:

$$z_k = \sum_{j=1}^{D} w_{kj} x_j + b_k \text{ for } k = 1, 2, ..., K$$
(30)

• We can eliminate the bias *b* by taking $W \in \mathbb{R}^{K \times (D+1)}$ adding a dummy variable x0 = 1. So, vectorized:

$$z = Wx + b$$
, or with dummy $x_0 = 1, z = Wx$ (31)

- How can we turn this linear prediction into a one-hot prediction?
- We can interpret the magnitude of z_k as a measure of how much the model prefers k as its prediction.
- If we do this, we should set

$$y_i = \begin{cases} 1 & i = \underset{k}{\operatorname{argmax}} z_k \\ 0 & \text{otherwise} \end{cases}$$
(32)

• Exercise: how does the case of K = 2 relate to the prediction rule in binary linear classifiers?

Softmax Regression

- We need to soften our predictions for the sake of optimization.
- We want soft predictions that are like probabilities, i.e., $0 \le y_k \le 1$ and $\sum_k y_k = 1$.
- A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

$$y_k = \operatorname{softmax}(z_1, ..., z_K)_k = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$
 (33)

- Outputs can be interpreted as probabilities (positive and sum to 1)
- If z_k is larger than the others, then $\operatorname{softmax}(z)_k \approx 1$ and it behaves like argmax.
- The inputs z_k are called the logits.

• If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function, where the log is applied elementwise.

$$\mathcal{L}_{CE}(\mathbf{y}, \mathbf{t}) = -\sum_{k=1}^{K} t_k \log y_k = -\mathbf{t}^{\top}(\log y)$$
(34)

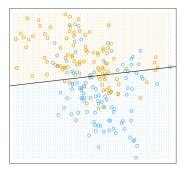
• Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-entropy function

Linear Classifiers vs. KNN

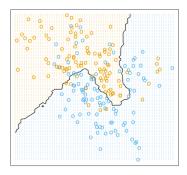
Linear Classifiers vs. KNN

• Linear classifiers and KNN have very different decision boundaries:

Linear Classifier



K Nearest Neighbours



Linear Classifiers vs. KNN

- Advantages of linear classifiers over KNN?
 - Robustness to irrelevant features
 - Linear classifiers are generally robust to irrelevant or redundant features.
 - Scalability
 - Linear classifiers can handle high-dimensional feature spaces efficiently and are more scalable as the number of features increases.
 - The curse of dimensionality!
 - Easy updates of the model
- Advantages of KNN over linear classifiers?
 - No assumption of data distribution
 - It is a non-parametric method, which means it does not assume any specific functional form for the decision boundaries.
 - Non-linearity
 - KNN can capture complex, non-linear decision boundaries
 - Robustness to imbalanced data
 - It relies on the local neighborhood and not global statistics.

Limitations of Linear Classification

A Few Basic Concepts

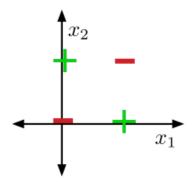
- A hypothesis is a function f : X → T that we might use to make predictions (recall X is the input space and T is the target space).
- The hypothesis space \mathcal{H} for a particular machine learning model or algorithm is a set of hypotheses that it can represent.
 - E.g., in linear regression, ${\cal H}$ is the set of functions that are linear in the data features
 - The job of a machine learning algorithm is to find a good hypothesis $f \in \mathcal{H}$
- The members of \mathcal{H} , together with an algorithm's preference for some hypotheses of \mathcal{H} over others, determine an algorithm's inductive bias.
 - Inductive biases can be understood as general natural patterns or domain knowledge that helps our algorithms to generalize;
 - E.g., linearity, continuity, simplicity (L_2 regularization) ...
 - The so-called No Free Lunch (NFL) theorems assert that if datasets/problems were not naturally biased, no ML algorithm would be better than another

A Few Basic Concepts

- If an algorithm's hypothesis space \mathcal{H} can be defined using a finite set of parameters, denoted θ , we say the algorithm is parametric.
 - In linear regression, $\theta = (w, b)$
 - Other examples: logistic regression, neural networks, k-means and Gaussian mixture models
- If the members of \mathcal{H} are defined in terms of the data, we say that the algorithm is non-parametric.
 - In *k*-nearest neighbors, the learned hypothesis is defined in terms of the training data
 - Other examples: Gaussian processes, decision trees, support vector machines, kernel density estimation
 - These models can sometimes be understood as having an infinite number of parameters

Limits of Linear Classification

• Some datasets are not linearly separable, e.g. XOR,

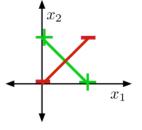


• Visually obvious, but how to show this?

William	&	Ma	ary
---------	---	----	-----

Showing that XOR is not linearly separable (proof by contradiction)

- If two points lie in a half-space, the line segment connecting them also lies in the same half-space.
- Suppose there were some feasible weights (hypothesis). If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space



• But the intersection can't lie in both half-spaces. Contradiction!

Limits of Linear Classification

• Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for XOR:

$oldsymbol{\psi}(\mathbf{x}) = egin{pmatrix} x_1 \ x_2 \ x_1 x_2 \end{pmatrix}$									
x_1	x_2	$\psi_1(\mathbf{x})$	$\psi_2(\mathbf{x})$	$\psi_3(\mathbf{x})$	$\mid t$				
0	0	0	0	0	0				
0	1	0	1	0	1				
1	0	1	0	0	1				
1	1	1	1	1	0				

• This is linearly separable.

In the Future

• Feature maps are hard to design well, so next time we'll see how to learn nonlinear feature maps directly using neural networks...

. . .

• The basics of NN will be covered in this class.

