Introduction to Machine Learning Support Vector Machines & Kernels

Ashley Gao

William & Mary

October 02, 2024

 $\begin{array}{c} \leftarrow \quad \quad \text{if} \quad \$

- **•** Prediction
	- Why might predictions be wrong?
- Support vector machines
	- Do really well with linear models
- Kernels
	- Making the non-linear linear

 \leftarrow \Box

 $2Q$

Why Might Predictions be Wrong?

• True non-determinism

- Flip a biased coin
- \bullet $p(\text{heads}) = \theta$
- \bullet Estimate θ
- If $\theta > 0.5$, predict "heads", else "tails"
- Lots of ML research on problems like this:
	- Learn a model
	- Do the best you can in expectation

Why Might Predictions be Wrong?

• Partial observability

- Something needed to predict y is missing from observation x
- \bullet *N*-bit parity problem
	- Determine the parity (even or odd) of a sequence of N binary bits.
	- The goal is to build a model that can correctly predict the parity of any given N-bit sequence.
- Noise in the observation \boldsymbol{x}
	- Measurement error
	- Instrument limitations
- Representational bias
- Algorithmic bias
- Bounded resources

\bullet Having the right features for \boldsymbol{x} is crucial

 \leftarrow \Box \rightarrow

Support Vector Machines

4 0 8 4

a \mathbb{R} \rightarrow

- Good generalization
	- in theory
	- in practice
- Works well with frew training instances
- Find globally best model
- Efficient algorithms
- Amenable to the kernel trick

 \leftarrow

Minor Notation Change

- To better match notations used in SVMs and to make matrix formulas simpler
- We will drop using superscripts for the i^{th} instance

- Training instances: $\mathbf{x} \in \mathbb{R}^{d+1}, x_0 = 1, y \in -1, 1$
- Model parameters: $\boldsymbol{\theta} \in \mathbb{R}^{d+1}$
- Hyperplane: $\theta^{\top} x = \langle \theta, x \rangle = 0$
	- the vectors are orthogonal to each other
- Recall the inner (dot) product:

$$
\langle \theta, x \rangle = \theta \cdot x = \theta^{\top} x = \sum_{i} \theta_{i} x_{i}
$$
 (1)

Decision function: $h(x) = sign(\theta^T x) = sign(\langle \theta, x \rangle)$

Which line or classifier is better?

 \leftarrow \Box \rightarrow \mathcal{A} $2Q$

Noise in the observations

- Each circle denotes the "noise" that can happen when the sample is observed (e.g. faulty measuring equipment)
- A sample's actual reading, in terms of features, can fall anywhere in the circle around the "true" values

More Noise; Ruling Out Some Seperators

When the readings (the values of features) become noisier, we can rule out some separators or classifiers

Only One Separator Remains

Assuming that the values of the features are as noisy as they can get, provided that the samples are still linearly separable in the feature space.

Maximizing the Margin

a. $|b - 4|$ ÷ Ξ

We want the separators as "wide" as possible, to allow for more noise in the features of the samples.

 \leftarrow

- Increasing margin reduces capacity
	- i.e. fewer possible models
- Lesson from Learning Theory:
	- If the following holds:
		- \bullet *H* is sufficiently constrained in size
		- and/or the size of the training dataset N is large
	- Then low training error is likely to be evidence of low generalization error

Alternative View of Logistic Regression

- if $y = 1$ we want $h_{\theta} \approx 1, \theta^{\top} x \gg 0$
- if $y = 0$ we want $h_{\theta} \approx 0, \theta^{\top} x \ll 0$

$$
h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\top} x}} \tag{2}
$$

$$
h_{\theta}(\mathbf{x}) = g(z)
$$
\n
$$
z = \theta^{\mathsf{T}} \mathbf{x}
$$

• We want to minimize the cross-entropy cost, by finding the θ summing the losses across the classifications on all the samples

$$
\mathcal{J}(\boldsymbol{\theta}) = -\sum_{i=1}^{N} [y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i))]
$$
(3)

- $\text{cost}_1(\theta^\top x_i) \Longleftrightarrow \text{log}h_\theta(x_i)$
- $\cos t_0(\boldsymbol{\theta}^\top \boldsymbol{x}_i) \Longleftrightarrow \log(1 h_{\boldsymbol{\theta}}(\boldsymbol{x}_i))$

つひつ

Alternative View of Logistic Regression

Cost of one sample:

$$
\mathcal{L}(\theta) = -y_i \log h_\theta(x_i) - (1 - y_i) \log(1 - h_\theta(x_i))
$$
 (4)

$$
h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\top} x}}\tag{5}
$$

$$
z = \boldsymbol{\theta}^{\top} \boldsymbol{x} \tag{6}
$$

If $y = 1$ (want $\boldsymbol{\theta}^\top \mathbf{x} \gg 0$): If $y = 0$ (want $\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x} \ll 0$):

Logistic Regression to SVMs

Logistic Regression:

$$
\min_{\theta} - \sum_{i=1}^{N} \left[y_i \log h_{\theta}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\theta}(\mathbf{x}_i)) \right] + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2 \tag{7}
$$

• Support Vector Machines:

$$
\min_{\theta} C \sum_{i=1}^{N} [y_i \text{cost}_1(\theta^{\top} \mathbf{x}_i) + (1 - y_i) \text{cost}_0(\theta^{\top} \mathbf{x}_i)] + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2 \tag{8}
$$

 \leftarrow

 \bullet C is a constant, a tunable hyperparameter. You can imagine it as similar to $\frac{1}{\lambda}$

The Hinge Loss

• Support Vector Machines:

$$
\min_{\theta} C \sum_{i=1}^{N} \left[y_i \text{cost}_1(\theta^{\top} x_i) + (1 - y_i) \text{cost}_0(\theta^{\top} x_i) \right] + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2 \qquad (9)
$$
\n
$$
\text{If } y = 1 \text{ (want } \theta^{\top} x \ge 1); \qquad \text{If } y = 0 \text{ (want } \theta^{\top} x \le -1);
$$

 $\ell_{\text{hinge}} = \max(0, 1 - y \cdot h(x))$ (10)

4 ロト 4 倒 ト 4

Ξ

 $2Q$

Maximum Margin Hyperplane

Large Margin Classifier in Presence of Outliers

 $\begin{array}{c} \leftarrow \quad \quad \text{if} \quad \$

• Some quick review on the vector inner product:

• Continued from the previous slide:

$$
\boldsymbol{u}^{\top}\boldsymbol{v} = \boldsymbol{v}^{\top}\boldsymbol{u} \tag{11}
$$

$$
\boldsymbol{u}^{\top}\boldsymbol{v} = u_1v_1 + u_2v_2 \tag{12}
$$

$$
\boldsymbol{u}^{\top}\boldsymbol{v} = ||\boldsymbol{u}||_2||\boldsymbol{v}||_2\cos\theta\tag{13}
$$

 $\begin{array}{c} 4 \quad \square \quad \triangleright \quad 4 \quad \square \end{array}$

British

$$
\mathbf{u}^{\top}\mathbf{v} = p||\mathbf{u}||_2, \text{ where } p = ||\mathbf{v}||_2 \cos\theta \tag{14}
$$

 $2Q$

Understanding the Hyperplane

• The hyperplane is orthogonal to the vector θ :

• Assume $\theta_0 = 0$ so that the hyperplane is centered at the origin, and that $d = 2$ for it to be visually rendered in 2D. All for the purpose of simplicity of the demo.

つくい

• Support Vector Machines objective to minimize:

$$
\min_{\theta} C \sum_{i=1}^{N} \left[y_i \text{cost}_1(\theta)^\top \mathbf{x}_i + (1 - y_i) \text{cost}_0(\theta)^\top \mathbf{x}_i \right] + \frac{1}{2} \sum_{j=1}^{d} \theta_j^2 \tag{15}
$$

- Suppose that C is set to an arbitrarily small value \Longleftrightarrow the first term becomes 0, for simplicity
- Now we are just minimizing the second term $\frac{1}{2} \sum_{j=1}^{d} \theta_j^2$
- Recall that $\theta^{\top} x_i \ge 1$ when $y_i = 1$ and $\theta^{\top} x_i \le -1$ when $y_i = -1$

つひつ

Maximizing the Margin

• Let p_i be the projection of x_i onto the vector θ

Since p is small, therefore $\|\theta\|_2$ must be large to have $p\|\theta\|_2 \geq 1$ (or \leq -1) | in order to have $p\|\theta\|_2 \geq 1$ (or \leq -1)

• The primal SVM problem was given as

$$
\frac{1}{2} \sum_{j=1}^{d} \theta_j^2
$$
, s.t. $y_i(\boldsymbol{\theta}^\top \mathbf{x}_i + b) \ge 1, \forall i$ (16)

- Can be solved more efficiently by taking the Lagrangian dual
	- Duality is a common idea in optimization
	- It transforms a difficult optimization problem into a simpler one \bullet
	- Key idea: introduce slack variables α_i for each constraint
		- α_i indicates how important a particular constraint is to the solution

The Lagragian

- The Lagrangian dual refers to the dual formulation of an optimization problem using the Lagrange duality theory.
- It transforms a primal optimization problem into its dual problem
	- which can sometimes provide useful insights or computational advantages.
- The Lagrange duality theory is based on the concept of Lagrange multipliers
	- which are introduced to incorporate constraints into an optimization problem.
- By introducing these multipliers, the problem is transformed into a new formulation that involves maximizing or minimizing a function called the Lagrangian
	- which incorporates both the objective function and the constraints.

 Ω

イロト イ押 トイヨ トイヨト

• The Lagrangian is given as, s.t. $\alpha_i \geq 0$ $\forall i$:

$$
\frac{1}{2} \sum_{j=1}^{d} \theta_j^2 - \sum_{i=1}^{n} \alpha_i (y_i (\boldsymbol{\theta}^\top x_i + b) - 1)
$$
 (17)

 \leftarrow

- We must minimize over θ and maximize over α
- At optimal solution, partials w.r.t. θ 's are 0

After solving a bunch of linear algebra and calculus, want to maximize:

$$
\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle
$$
 (18)

Such that $\sum_i a_j y_j = 0$, s.t. $\alpha_i \geq 0$, $\forall i$

• The decision function is given by:

$$
h(\mathbf{x}) = \text{sign}\left(\sum_{i \in SV} \alpha_i y_i \langle \mathbf{x}, \mathbf{x}_i \rangle + b\right) \tag{19}
$$

$$
b = \frac{1}{|SV|} \sum_{i \in SV} \left(y_i - \sum_{j \in SV} \alpha_j y_j \langle x_i, x_j \rangle \right)
$$
 (20)

- • We have $\alpha_i \geq 0$, $\forall i$
	- Constaint weights (α_i) 's cannot be negative)
- We have $\sum_i \alpha_i y_i = 0$
	- Balances between the weight of constraints for different classes

 \leftarrow \Box \rightarrow

 $2Q$

After solving a bunch of linear algebra and calculus, want to maximize:

$$
\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \tag{21}
$$

Such that $\sum_i a_j y_j = 0$, s.t. $\alpha_i \geq 0$, $\forall i$

- $\langle x_i, x_j \rangle$ measures the similarity between the points
- Points with different labels increase the sum 1 $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$, while points with the same label decrease the sum

 200

After solving a bunch of linear algebra and calculus, want to maximize:

$$
\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle
$$
 (22)

Such that $\sum_i a_j y_j = 0$, s.t. $\alpha_i \geq 0$, $\forall i$

- $a_i \geq 0$ and the constraint is tight $y_i(\boldsymbol{\theta}^\top \mathbf{x}_i) = 1$
	- Point is a support vector
- $a_i = 0$
	- Point is not a support vector

- Cannot find θ that satisfies $y_i(\theta^\top x_i) \geq 1, \forall i$
- Introduce the slack variable ξ_i

$$
y_i(\boldsymbol{\theta}^\top \boldsymbol{x}_i) \ge 1 - \xi_i, \forall i \tag{23}
$$

New problem, s. t. $y_i(\theta^\top x_i) \geq 1 - \xi_i$, $\forall i$:

$$
\min_{\theta} \frac{1}{2} \sum_{j=1}^{d} \theta_j^2 + C \sum_{i} \xi_i
$$
 (24)

- Good generalization in theory
- Good generalization in practice
- Work well with few training instances
- Find the globally best model
- Efficient algorithms
- Amenable to the kernel trick ...

What is the Decision Boundary Is Not Linear?

 $\begin{array}{c} \leftarrow \quad \text{ } \quad \text{ }$ \mathcal{A}

Kernel Methods: Making the Non-Linear Linear

 $\begin{array}{c} \leftarrow \quad \quad \text{if} \quad \$

When Linear Separators Fail

4 0 8 4 同

 $|b - 4|$ ∍ Ξ

 $2Q$

Mapping into a New Feature Space

For example, with $x_i \in \mathbb{R}^2$:

$$
\Phi([x_{i1}, x_{i2}]) = [x_{i1}, x_{i2}, x_{i1}x_{i2}, x_{i1}^2, x_{i2}^2]
$$
\n(25)

$$
(25)
$$

- Rather than running SVM on x_i , run it on $\Phi(x_i)$
	- Find non-linear separator in input space
- What if $\Phi(x_i)$ is really big?
- Use kernels to compute it implicitly!

$$
\Phi: \mathcal{X} \to \hat{\mathcal{X}} = \Phi(\mathbf{x}) \tag{26}
$$

 \bullet Find kernels K such that:

$$
K(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle \tag{27}
$$

 \leftarrow \Box \rightarrow

- Compute $K(\mathbf{x}_i, \mathbf{x}_j)$ should be efficient, much more so than computing $\Phi(x_i)$ and $\Phi(x_i)$
- Use $K(x_i, x_j)$ in the SVM algorithm rather than $\langle x_i, x_j \rangle$

The Polynomial Kernel

• Let $x_i = [x_{i1}, x_{i2}]$ and $x_j = [x_{j1}, x_{j2}]$

Consider the following function:

$$
K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2 \tag{28}
$$

$$
K(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1}x_{j1} + x_{i2}x_{j2})^2
$$
 (29)

$$
K(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1}^2 x_{j1}^2 + x_{i2}^2 x_{j2}^2 + 2x_{i1} x_{i2} x_{j1} x_{j2})
$$
(30)

$$
K(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle \tag{31}
$$

• where

$$
\Phi(x_i) = [x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2}]
$$
\n(32)

$$
\Phi(\mathbf{x}_j) = [x_{j1}^2, x_{j2}^2, \sqrt{2}x_{j1}x_{j2}] \tag{33}
$$

- Given an algorithm that is formulated in terms of a positive definite kernel K_1 , one can construct an alternative algorithm by replacing K_1 with another positive definite kernel $K₂$
- SVMs can use the kernel trick

Incorporating Kernels into SVMs

• Originally we have:

$$
\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle
$$
 (34)

Such that $\sum_i a_j y_j = 0$, s.t. $\alpha_i \geq 0$, $\forall i$

After we incorporate the kernel, it becomes:

$$
\mathcal{J}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)
$$
(35)

 \leftarrow

Such that $\sum_i a_i y_j = 0$, s.t. $\alpha_i \geq 0$, $\forall i$

The Gaussian Kernel

Also called Radial Basis Function (RBF) kernel

$$
K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{||\mathbf{x}_i - \mathbf{x}_j||_2^2}{2\sigma^2}\right)
$$
(36)

- Has value 1 when $x_i = x_j$
- Value falls off to 0 with increasing distance
- Note: Need to do feature scaling before using the Gaussian kernel

The Gaussian Kernel: An Example

Assume that we want to predict +1 or positive if:

$$
\theta_0 + \theta_1 K(\mathbf{x}, \ell_1) + \theta_2 K(\mathbf{x}, \ell_2) + \theta_3 K(\mathbf{x}, \ell_3) \ge 0 \tag{37}
$$

つひつ

Assume that we want to predict +1 or positive if:

$$
\theta_0 + \theta_1 K(\mathbf{x}, \ell_1) + \theta_2 K(\mathbf{x}, \ell_2) + \theta_3 K(\mathbf{x}, \ell_3) \ge 0 \tag{38}
$$

• for x_1 , we have $K(x_1, \ell_1) \approx 1$, other similarities ≈ 0

$$
\theta_0 + \theta_1(1) + \theta_2(0) + \theta_3(0) = 0.5 \ge 0 \tag{39}
$$

• so, predict +1 or positive

つくい

Assume that we want to predict +1 or positive if:

$$
\theta_0 + \theta_1 K(\mathbf{x}, \ell_1) + \theta_2 K(\mathbf{x}, \ell_2) + \theta_3 K(\mathbf{x}, \ell_3) \ge 0 \tag{40}
$$

• for x_2 , we have $K(x_2, \ell_3) \approx 1$, other similarities ≈ 0

$$
\theta_0 + \theta_1(0) + \theta_2(0) + \theta_3(1) = -0.5 \le 0 \tag{41}
$$

so, predict -1 or negative

つひつ

• Assume that we want to predict +1 or positive if:

$$
\theta_0 + \theta_1 K(\mathbf{x}, \ell_1) + \theta_2 K(\mathbf{x}, \ell_2) + \theta_3 K(\mathbf{x}, \ell_3) \ge 0 \tag{42}
$$

• Here's the graph sketch of the decision boundary when projected into the 2D space

つくい

Other Kernels

• Sigmoid Kernel

$$
K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\alpha \mathbf{x}_i^{\top} \mathbf{x}_j + c) \tag{43}
$$

- Neural networks use sigmoid as an activation function
- SVM with a sigmoid kernel is equivalent to a 2-layer perceptron
- Cosine Similarity Kernel

$$
K(x_i, x_j) = \frac{x_i^{\top} x_j}{||x_i|| ||x_j||}
$$
 (44)

- Popular choice for measuring the similarity of text documents
- L^2 norm projects vectors onto the unit sphere; their dot product is the cosine of the angle between the vectors

Other Kernels

Chi-squared Kernel

$$
K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\gamma \sum_k \frac{(x_{ik} - x_{jk})^2}{x_{ik} + xjk}\right)
$$
(45)

- Widely used in computer vision applications
- Chi-squared measures the distance between probability distributions
- Data is issued to be non-negative, often with L^1 norm
- String kernels
- **•** Tree kernels
- Graph kernels

- • The SVM finds the optimal linear separator
- The kernel trick makes SVMs learn non-linear decision surfaces
- Strengths of SVMs:
	- Good theoretical and empirical performance
	- Supports many types of kernels
- Weaknesses of SVMs:
	- "Slow" to train and predict for huge datasets (although relatively fast...)
	- The kernel needs to be wisely chosen and its parameters need to be tuned