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Overview

Prediction
Why might predictions be wrong?

Support vector machines
Do really well with linear models

Kernels
Making the non-linear linear
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Why Might Predictions be Wrong?

True non-determinism
Flip a biased coin
?(heads) = \
Estimate \
If \ > 0.5, predict “heads”, else “tails”

Lots of ML research on problems like this:
Learn a model
Do the best you can in expectation
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Why Might Predictions be Wrong?

Partial observability
Something needed to predict H is missing from observation x
#-bit parity problem

Determine the parity (even or odd) of a sequence of N binary bits.
The goal is to build a model that can correctly predict the parity of any given
N-bit sequence.

Noise in the observation x
Measurement error
Instrument limitations

Representational bias
Algorithmic bias
Bounded resources
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Representational Bias

Having the right features for x is crucial
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Support Vector Machines
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Strengths of SVMs

Good generalization
in theory
in practice

Works well with frew training instances
Find globally best model
Efficient algorithms
Amenable to the kernel trick
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Minor Notation Change

To better match notations used in SVMs and to make matrix formulas
simpler
We will drop using superscripts for the 8Cℎ instance
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Minor Notation Change

Training instances: x ∈ R3+1, G0 = 1, H ∈ −1, 1
Model parameters: ) ∈ R3+1
Hyperplane: )>x = 〈) , x〉 = 0

the vectors are orthogonal to each other
Recall the inner (dot) product:

〈) , x〉 = ) · x = )>x =
∑
8

\8G8 (1)

Decision function: ℎ(x) = sign()>x) = sign(〈) , x〉)
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Intuition

Which line or classifier is better?
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Noise in the observations

Each circle denotes the “noise” that can happen when the sample is
observed (e.g. faulty measuring equipment)
A sample’s actual reading, in terms of features, can fall anywhere in the
circle around the “true” values
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More Noise; Ruling Out Some Seperators

When the readings (the values of features) become noisier, we can rule
out some separators or classifiers
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Only One Separator Remains

Assuming that the values of the features are as noisy as they can get,
provided that the samples are still linearly separable in the feature space.
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Maximizing the Margin
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“Wide” Separators

We want the separators as “wide” as possible, to allow for more noise in
the features of the samples.
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Why Maximize Margin

Increasing margin reduces capacity
i.e. fewer possible models

Lesson from Learning Theory:
If the following holds:

� is sufficiently constrained in size
and/or the size of the training dataset # is large

Then low training error is likely to be evidence of low generalization error
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Alternative View of Logistic Regression

if H = 1 we want ℎ) ≈ 1, )>x � 0
if H = 0 we want ℎ) ≈ 0, )>x � 0

ℎ) (x) =
1

1 + 4−)>x
(2)

We want to minimize the cross-entropy cost, by finding the ) summing
the losses across the classifications on all the samples

J ()) = −
#∑
8=1
[H8logℎ) (x8) + (1 − H8)log(1 − ℎ) (x8))] (3)

cost1()>x8) ⇐⇒ logℎ) (x8)
cost0()>x8) ⇐⇒ log(1 − ℎ) (x8))
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Alternative View of Logistic Regression

Cost of one sample:

L()) = −H8logℎ) (x8) − (1 − H8)log(1 − ℎ) (x8)) (4)

ℎ) (x) =
1

1 + 4−)>x
(5)

I = )>x (6)
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Logistic Regression to SVMs

Logistic Regression:

min
)
−

#∑
8=1
[H8logℎ) (x8) + (1 − H8)log(1 − ℎ) (x8))] +

_

2

3∑
9=1
\2
9 (7)

Support Vector Machines:

min
)
�

#∑
8=1
[H8cost1()>x8) + (1 − H8)cost0()>x8)] +

1
2

3∑
9=1
\2
9 (8)

� is a constant, a tunable hyperparameter. You can imagine it as similar
to 1

_
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The Hinge Loss

Support Vector Machines:

min
)
�

#∑
8=1
[H8cost1()>x8) + (1 − H8)cost0()>x8)] +

1
2

3∑
9=1
\2
9 (9)

ℓhinge = max(0, 1 − H · ℎ(x)) (10)
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Maximum Margin Hyperplane
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Large Margin Classifier in Presence of Outliers
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Vector Inner Product

Some quick review on the vector inner product:
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Vector Inner Product

Continued from the previous slide:

u>v = v>u (11)

u>v = D1E1 + D2E2 (12)

u>v = | |u | |2 | |v | |2cos\ (13)

u>v = ? | |u | |2,where ? = | |v | |2cos\ (14)
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Understanding the Hyperplane

The hyperplane is orthogonal to the vector ):

Assume \0 = 0 so that the hyperplane is centered at the origin, and that
3 = 2 for it to be visually rendered in 2D. All for the purpose of
simplicity of the demo.
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Understanding the Hyperplane

Support Vector Machines objective to minimize:

min
)
�

#∑
8=1
[H8cost1())>x8 + (1 − H8)cost0())>x8] +

1
2

3∑
9=1
\2
9 (15)

Suppose that � is set to an arbitrarily small value⇐⇒ the first term
becomes 0, for simplicity
Now we are just minimizing the second term 1

2
∑3
9=1 \

2
9

Recall that )>x8 ≥ 1 when H8 = 1 and )>x8 ≤ −1 when H8 = −1
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Maximizing the Margin

Let ?8 be the projection of x8 onto the vector )
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The SVN Dual Problem

The primal SVM problem was given as

1
2

3∑
9=1
\2
9 , s.t. H8 ()>x8 + 1) ≥ 1,∀8 (16)

Can be solved more efficiently by taking the Lagrangian dual
Duality is a common idea in optimization
It transforms a difficult optimization problem into a simpler one
Key idea: introduce slack variables U8 for each constraint

U8 indicates how important a particular constraint is to the solution
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The Lagragian

The Lagrangian dual refers to the dual formulation of an optimization
problem using the Lagrange duality theory.
It transforms a primal optimization problem into its dual problem

which can sometimes provide useful insights or computational advantages.
The Lagrange duality theory is based on the concept of Lagrange
multipliers

which are introduced to incorporate constraints into an optimization
problem.

By introducing these multipliers, the problem is transformed into a new
formulation that involves maximizing or minimizing a function called the
Lagrangian

which incorporates both the objective function and the constraints.

William & Mary CSCI 416 & 516 October 02, 2024 29 / 52



The SVM Dual Problem

The Lagrangian is given as, s.t. U8 ≥ 0 ∀8:

1
2

3∑
9=1
\2
9 −

=∑
8=1

U8 (H8 ()>G8 + 1) − 1) (17)

We must minimize over ) and maximize over "
At optimal solution, partials w.r.t. )’s are 0
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The SVM Dual Representation

After solving a bunch of linear algebra and calculus, want to maximize:

J (U) =
=∑
8=1

U8 −
1
2

=∑
8=1

=∑
9=1
U8U 9 H8H 9 〈x8 , x 9〉 (18)

Such that
∑
8 0 9 H 9 = 0, s.t. U8 ≥ 0,∀8

The decision function is given by:

ℎ(x) = sign

( ∑
8∈(+

U8H8 〈x, x8〉 + 1
)

(19)

1 =
1
|(+ |

∑
8∈(+

©«H8 −
∑
9∈(+

U 9 H 9 〈x8 , x 9〉
ª®¬ (20)
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Understanding the Dual

We have U8 ≥ 0,∀8
Constaint weights (U8’s cannot be negative)

We have
∑
8 U8H8 = 0

Balances between the weight of constraints for different classes
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Understanding the Dual

After solving a bunch of linear algebra and calculus, want to maximize:

J (U) =
=∑
8=1

U8 −
1
2

=∑
8=1

=∑
9=1
U8U 9 H8H 9 〈x8 , x 9〉 (21)

Such that
∑
8 0 9 H 9 = 0, s.t. U8 ≥ 0,∀8

〈x8 , x 9〉 measures the similarity between the points
Points with different labels increase the sum
1
2
∑=
8=1

∑=
9=1 U8U 9 H8H 9 〈x8 , x 9〉, while points with the same label decrease

the sum

William & Mary CSCI 416 & 516 October 02, 2024 33 / 52



Understanding the Dual

After solving a bunch of linear algebra and calculus, want to maximize:

J (U) =
=∑
8=1

U8 −
1
2

=∑
8=1

=∑
9=1
U8U 9 H8H 9 〈x8 , x 9〉 (22)

Such that
∑
8 0 9 H 9 = 0, s.t. U8 ≥ 0,∀8

08 ≥ 0 and the constraint is tight H8 ()>x8) = 1
Point is a support vector

08 = 0
Point is not a support vector
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What if Data Are Not Linearly Separable?

Cannot find ) that satisfies H8 ()>x8) ≥ 1,∀8
Introduce the slack variable b8

H8 ()>x8) ≥ 1 − b8 ,∀8 (23)

New problem, s. t. H8 ()>x8) ≥ 1 − b8 ,∀8:

min
)

1
2

3∑
9=1
\2
9 + �

∑
8

b8 (24)
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Strengths of SVMs

Good generalization in theory
Good generalization in practice
Work well with few training instances
Find the globally best model
Efficient algorithms
Amenable to the kernel trick ...
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What is the Decision Boundary Is Not Linear?
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Kernel Methods: Making the Non-Linear Linear
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When Linear Separators Fail
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Mapping into a New Feature Space

For example, with x8 ∈ R2:

Φ( [G81, G82]) = [G81, G82, G81G82, G2
81, G

2
82] (25)

Rather than running SVM on x8 , run it on Φ(x8)
Find non-linear separator in input space

What if Φ(x8) is really big?
Use kernels to compute it implicitly!

Φ : X → X̂ = Φ(x) (26)
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Kernels

Find kernels  such that:

 (x8 , x 9) = 〈Φ(x8),Φ(x 9)〉 (27)

Compute  (x8 , x 9) should be efficient, much more so than computing
Φ(x8) and Φ(x 9)
Use  (x8 , x 9) in the SVM algorithm rather than 〈x8 , x 9〉
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The Polynomial Kernel

Let x8 = [G81, G82] and x 9 = [G 91, G 92]
Consider the following function:

 (x8 , x 9) = 〈x8 , x 9〉2 (28)

 (x8 , x 9) = (G81G 91 + G82G 92)2 (29)

 (x8 , x 9) = (G2
81G

2
91 + G

2
82G

2
92 + 2G81G82G 91G 92) (30)

 (x8 , x 9) = 〈Φ(x8),Φ(x 9)〉 (31)
where

Φ(x8) = [G2
81, G

2
82,
√

2G81G82] (32)

Φ(x 9) = [G2
91, G

2
92,
√

2G 91G 92] (33)
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The Kernel Trick

Given an algorithm that is formulated in terms of a positive definite
kernel  1, one can construct an alternative algorithm by replacing  1
with another positive definite kernel  2

SVMs can use the kernel trick
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Incorporating Kernels into SVMs

Originally we have:

J (U) =
=∑
8=1

U8 −
1
2

=∑
8=1

=∑
9=1
U8U 9 H8H 9 〈x8 , x 9〉 (34)

Such that
∑
8 0 9 H 9 = 0, s.t. U8 ≥ 0,∀8

After we incorporate the kernel, it becomes:

J (U) =
=∑
8=1

U8 −
1
2

=∑
8=1

=∑
9=1
U8U 9 H8H 9 (x8 , x 9) (35)

Such that
∑
8 0 9 H 9 = 0, s.t. U8 ≥ 0,∀8
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The Gaussian Kernel

Also called Radial Basis Function (RBF) kernel

 (x8 , x 9) = exp

(
−
||x8 − x 9 | |22

2f2

)
(36)

Has value 1 when x8 = x 9
Value falls off to 0 with increasing distance
Note: Need to do feature scaling before using the Gaussian kernel
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The Gaussian Kernel: An Example

Assume that we want to predict +1 or positive if:

\0 + \1 (x, ℓ1) + \2 (x, ℓ2) + \3 (x, ℓ3) ≥ 0 (37)
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The Gaussian Kernel: An Example

Assume that we want to predict +1 or positive if:

\0 + \1 (x, ℓ1) + \2 (x, ℓ2) + \3 (x, ℓ3) ≥ 0 (38)

for x1, we have  (x1, ℓ1) ≈ 1, other similarities ≈ 0

\0 + \1(1) + \2(0) + \3(0) = 0.5 ≥ 0 (39)

so, predict +1 or positive
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The Gaussian Kernel: An Example

Assume that we want to predict +1 or positive if:

\0 + \1 (x, ℓ1) + \2 (x, ℓ2) + \3 (x, ℓ3) ≥ 0 (40)

for x2, we have  (x2, ℓ3) ≈ 1, other similarities ≈ 0

\0 + \1(0) + \2(0) + \3(1) = −0.5 ≤ 0 (41)

so, predict -1 or negative
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The Gaussian Kernel: An Example

Assume that we want to predict +1 or positive if:

\0 + \1 (x, ℓ1) + \2 (x, ℓ2) + \3 (x, ℓ3) ≥ 0 (42)

Here’s the graph sketch of the decision boundary when projected into the
2D space
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Other Kernels

Sigmoid Kernel
 (x8 , x 9) = tanh(Ux>8 x 9 + 2) (43)

Neural networks use sigmoid as an activation function
SVM with a sigmoid kernel is equivalent to a 2-layer perceptron

Cosine Similarity Kernel

 (x8 , x 9) =
x>
8
x 9

| |x8 | | | |x 9 | |
(44)

Popular choice for measuring the similarity of text documents
!2 norm projects vectors onto the unit sphere; their dot product is the
cosine of the angle between the vectors
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Other Kernels

Chi-squared Kernel

 (x8 , x 9) = exp

(
−W

∑
:

(G8: − G 9:)2

G8: + G 9 :

)
(45)

Widely used in computer vision applications
Chi-squared measures the distance between probability distributions
Data is issued to be non-negative, often with !1 norm

String kernels
Tree kernels
Graph kernels
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Conclusion

The SVM finds the optimal linear separator
The kernel trick makes SVMs learn non-linear decision surfaces
Strengths of SVMs:

Good theoretical and empirical performance
Supports many types of kernels

Weaknesses of SVMs:
“Slow” to train and predict for huge datasets (although relatively fast...)
The kernel needs to be wisely chosen and its parameters need to be tuned
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