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Overview

@ Decision Tree
e Simple but powerful learning algorithm
o Used widely in Kaggle competitions
o Lets us motivate concepts from information theory (entropy, mutual
information, etc.)
@ Bias-variance decomposition
o Lets us motivate methods for combining different classifiers.
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Decision Tree

@ Make predictions by splitting features according to a tree structure.
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Decision Tree

@ Make predictions by splitting features according to a tree structure.

Test example
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Decision Trees — Continuous Features

@ Split continuous features by checking whether that feature is greater than
or less than some threshold.

@ Decision boundary is made up of axis-aligned planes.
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Decision Trees — Continuous Features

@ Internal nodes test a feature
@ Branching is determined by the feature value

@ Leaf nodes are outputs (predictions)
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Decision Trees — Continuous Features

@ Each path from the root to a leaf
defines a region R,, of input space

o Let
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Decision Trees — Discrete Features

@ Will I eat at this restaurant?

Alternate?
No Yes

| Reservation? || Fri/Sat? |
No Yes No Yes

No Yes

Alternate?
No
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Decision Trees — Discrete Features

o Split discrete features into a partition of possible values.

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res = Type Est WillWait

X Yes | No | No | Yes| Some $5§ No | Yes French 0-10 Yy = Yes
Xg Yes | No | No | Yes| Full $ No | No | Thai | 30-60 | y,= No
X3 No | Yes| No | No | Some $ No | No | Burger ‘ 0-10 | y3 = Yes
X4 Yes | No | Yes| Yes| Full 3 Yes | No Thai 10-30 | ys= Yes
X5 Yes | No | Yes| No Full | $$8 | No | Yes French | >60 | y;= No
Xg No | Yes| No| Yes| Some 8§ | Yes Yes| ltalian | 0-10 | ys= Yes
X7 No | Yes| No| No | None $ Yes | No | Burger | 0-10 | y; = No
Xg No | No | No | Yes| Some| 85 | Yes Yes| Thai 0-10 | yg= Yes
Xg No | Yes | Yes| No | Full $ Yes | No Burger >60 | yy= No
X10 Yes | Yes | Yes| Yes| Full | $$8 | No | Yes Italian = 10-30 | y;0= No
X1 No | No | No | No | None $ No | No Thai 0-10 | y11 = No
X192 Yes | Yes | Yes| Yes Full $ No No | Burger | 30-60 | 112 = Yes

L. | | Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in

3. | | Fri/sat: true on Fridays and Saturdays

4. | | Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full)

6. Price: the restaurant's price range ($, $$, $$$)

7, Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thal or Burger).

Features: 10. | | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60)
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Learning Decision Trees

@ For any training set we can construct a decision tree that has exactly one
leaf for every training point, but it probably won’t generalize.

o Decision trees are universal function approximators.

o But, finding the smallest decision tree that correctly classifies a training
set is NP-complete.

o If you are interested, check: Hyafil & Rivest’76.

@ So, how do we construct a useful decision tree?
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Learning Decision Trees

@ Resort to a greedy heuristic:

o Start with the whole training set and an empty decision tree
o Pick a feature and candidate split that would most reduce the loss
e Split on that feature and recurse on subpartitions

@ Which loss should we use?
o Let’s see if the misclassification rate is a good loss.
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Choosing a Good Split

o Consider the following data. Let’s split on width

o
® oranges

A

A lemons

height

> o0
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Choosing a Good Split

o Recall: classify by majority.

A B
_e| ee o eo|e
= ® oranges
K=
2 Ao Al® A lemons
([ ] A [ ] A
width width

@ A and B have the same misclassification rate, so which is the best split?
Vote!
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Choosing a Good Split

o A feels like a better split, because the left-hand region is very certain
about whether the fruit is an orange.

A B
_e| eoe o ofe
< ® oranges
> A® Al® P
< lemons
[ ] A ([ A
width width

o Can we quantify this?
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Choosing a Good Split

@ How can we quantify uncertainty in prediction for a given leaf node?

o If all examples in the leaf have the same class: good, low uncertainty
o If each class has the same amount of examples in leaf: bad, high
uncertainty

o Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

@ A brief detour through information theory...
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Choosing a Good Split

o The entropy of a discrete random variable is a number that quantifies the
uncertainty inherent in its possible outcomes.

o The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated.

o If you're interested, check: Information Theory by Robert Ash.

o To explain entropy, consider flipping two different coins...
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We Flip Two Difterent Coins

Sequence 1:
P00100000000000100 ...7

Sequence 2:
210101110100110101...7

16
8 10
versus
: L
—
0 1 Q 1
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Quantifying Uncertainty

@ The entropy of a loaded coin with probability p of heads is given by:

—plog, (p) — (1 - p)log,(1 - p) (D
8/9
49 59
[
 —] 0 1
o 1
8 8 1 1 1
—glogag —glogag =~y —glogzg—gbgzgzo.gg

@ Notice: the coin whose outcomes are more certain has a lower entropy.

@ In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.
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Quantifying Uncertainty

@ Can also think of entropy as the expected information content of a
random draw from a probability distribution.
entropy
1.0

0.8}
0.6}
0.4}

0.2

. . L 1 robability p of heads
0.2 0.4 0.6 0.8 1.0 P e

@ Units of entropy are bits; a fair coin flip has 1 bit of entropy
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Choosing a Good Split

@ More generally, the entropy of a discrete random variable Y is given by:

HY) == p("logp(y) 2
yeYy
o “High Entropy”:
e Variable has a uniform like distribution over many outcomes

o Flat histogram
e Values sampled from it are less predictable

o “Low Entropy”:

o Distribution is concentrated on only a few outcomes
o Histogram is concentrated in a few areas
e Values sampled from it are more predictable
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@ Suppose we observe partial information X about a random variable Y
e For example, X = sign(Y)

@ We want to work towards a definition of the expected amount of
information that will be conveyed about Y by observing X.
e Or equivalently, the expected reduction in our uncertainty about Y after
observing X.

William & Mary CSCI 416 & 516 October 21, 2024

21/37



Entropy of a Joint Distribution

e Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining[ 25/100 50/100

H(X,Y) == 3" p(x,»)log,p(x,y) (3)

xeX yeYy
By =0, 2 - Ly L 25, 25 50,50
77700 022700~ 100 022700 100 22100 100 gzl(()%
H(X,Y) ~ 1.56bits (5)
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Specific Conditional Entropy

e Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining (X = raining)?

H(Y|X =x) == > p(yl0)logp(ylx) ©)
yeYy
24 24 1 1
= = ~ 7
H(Y|X = x) = ~-logy 2 — 5clogy = ~ 0.24bits )

e We used p(ylx) = p()(cx))') and p(x) = X, p(x,y) (sum in a row)
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Conditional Entropy

o Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given the variable X?

@ The expected conditional entropy:

H(Y|X)= ) p()H(Y|X =x) @®)
xeX
HYIX) == "> plx, »)logyp(ylx) ©)
xeX yeYy
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Conditional Entropy

e Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy |Not Cloudy
Raining 24/100 1/100
Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given the variable X?

H(Y|X) = )" p()H(Y|X =x)

xeX

(10)

1 3
HY|X) = é_lH (cloudy|raining) + ZH (cloudy|not raining) =~ 0.75bits

(11)
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Conditional Entropy

@ Some useful properties:
e H is always non-negative
e Chainrule: H(X,Y)=H(X|Y)+H(Y)=HY|X) + H(X)
e if X and Y are independent, then X does not affect our uncertainty about Y:
HY|X)=H(Y)
e By knowing Y makes our knowledge of Y certain: H(Y|Y) =0
e By knowing X, we can decrease the uncertainty about Y: H(Y|X) < H(Y)
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Information Gain

o Example: X = {Raining, Not raining}, ¥ = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ How much more certain am I about whether it’s cloudy if I'm told
whether it is raining? My uncertainty in ¥ minus my expected
uncertainty that would remain in Y after seeing X.

o This is called the information gain /G (Y|X) in Y due to X, or the mutual
information of Y and X

IG(Y|X) = H(Y) - H(Y|X) (12)

o if X is completely uninformative about Y: IG(Y|X) =0
o if X is completely informative about Y: IG(Y|X) = H(Y
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Revisiting Our Original Example

o Information gain measures the informativeness of a variable, which is
exactly what we desire in a decision tree split!

@ The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you’re on.

William & Mary CSCI 416 & 516 October 21, 2024 28/37



Revisiting Our Original Example

@ What is the information gain of split B? Not terribly informative...

B
e eo|e
< ® oranges
=
o Al® A lemons
® A
width

@ Root entropy of class outcome: H(Y) = —%logz% - %logzg ~ 0.86

@ Leaf conditional entropy of class outcome: H (Y |left) =~ 0.81,
H(Y|right) ~ 0.92

o IG(split) ~ 0.86 — (3 - 0.81 + 2 - 0.92) ~ 0.006
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Revisiting Our Original Example

@ What is the information gain of split A? Very informative!

A
o] oo
= ® oranges
2
[ A® A lemons
® A
width

@ Root entropy of class outcome: H(Y) = —%logz% - glogzg ~ 0.86

o Leaf conditional entropy of class outcome: H (Y |left) = 0,
h(Y|right) = 0.97

o IG(split) ~0.86 — (3 -0+ 2 -0.97) ~ 0.17!
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Constructing Decision Trees

@ At each level, one must choose:
e Which particular feature to split
o Possibly where to split it
@ Choose them based on how much information we would gain from the
decision! (choose the feature that gives the highest gain)

height (cm)

height > 9.5cm!

?
a ° ® oranges | Yes, No Yes

Chee @O QW @
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Decision Tree Construction Algorithm

e Simple, greedy, recursive approach, builds up tree node-by-node

e pick a feature to split at a non-terminal node
o split examples into groups based on a feature value
o for each group:

o if all examples in the same class — return class
@ else loop to step 1
o Terminates when all leaves contain only examples in the same class or
are empty
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Back to Our Example

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price|Rain | Res | Type Est WillWait

X1 Yes| No| No| Yes| Some| $85 | No | Yes| French 0-10 y1 = Yes
X3 Yes| No | No | Yes| Full k) No | No Thai ‘ 30-60 | y» = Neo
X3 No | Yes| No| No | Some 3 No | No | Burger ‘ 0-10 | y3 = Yes
Xy Yes | No | Yes| Yes| Full k) Yes | No Thai 10-30 | y4 = Yes
X5 Yes | No | Yes| No | Full | $3% | No VYes| French >60 | y;= No
X5 No | Yes| No | Yes| Some| $$ | Yes VYes| ltalian 0-10 | yg= Yes
X7 No | Yes| No| No | None $ Yes | No | Burger 0-10 | y7; = No
Xs No | No | No | Yes| Some| $% | Yes VYes Thai 0-10 | ys = Yes
Xg No | Yes| Yes| No | Full $ Yes No | Burger| >60 | yy= No
X10 Yes | Yes| Yes| Yes| Full 385 | No | Yes| [talian | 10-30 | yio = No
X11 No | No | No| No | None 3 No | No Thai 0-10 | y11 = No
X129 Yes | Yes| Yes| Yes Full $ No | No | Burger 30-60| y;2= Yes

1. | [ Alternate: whether there is a suitable alternative restaurant nearby.

2. | | Bar: whether the restaurant has a comfortable bar area to wait in

3 Fri/Sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full).

6 Price: the restaurant's price range ($, $$, $$$).

7. | | Raining: whether it is raining outside.

8 Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger)

Features: 10. | | waitestimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
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Feature Selection

2 2 4 4
=1-|— )+ — )+ — i)— )l =0
IG(Type) =1 [12H(Y|Fr) + 12H(Y|It)+ 12H(Y|Tha1) 12H(Y|Bu1r)]

(13)

2 4 6
IG (Patron) = 1 — [EH(Y|N0ne) + EH(Y|SOme) + EH(Y|Full)] ~ 0.541
(14)
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Which Tree is Better? Vote!

Patrons?

French Burger

Patrons?

| Alternate? |
No Yes

| Reservation? ” Fri/Sat? |




What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions
in data
@ Not too big:

e Computational efficiency (avoid redundant, spurious attributes)
o Avoid over-fitting training examples
o Human interpretability

@ Occam’s Razor”: find the simplest hypothesis that fits the observations

o Useful principle, but hard to formalize (how to define simplicity?)
e See Domingos, 1999, “The role of Occam’s razor in knowledge discovery”

@ We desire small trees with informative nodes near the root
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What Makes a Good Tree?

@ Problems:
e You have exponentially less data at lower levels
e Too big of a tree can overfit the data
o Greedy algorithms don’t necessarily yield the global optimum
o Handling continuous attributes
o Split based on a threshold, chosen to maximize information gain
@ Decision trees can also be used for regression on real-valued outputs.

Choose splits to minimize squared error, rather than maximize
information gain.
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