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Overview

Decision Tree
Simple but powerful learning algorithm
Used widely in Kaggle competitions
Lets us motivate concepts from information theory (entropy, mutual
information, etc.)

Bias-variance decomposition
Lets us motivate methods for combining different classifiers.

William & Mary CSCI 416 & 516 October 21, 2024 2 / 37



Decision Tree

Make predictions by splitting features according to a tree structure.
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Decision Tree

Make predictions by splitting features according to a tree structure.
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Decision Trees — Continuous Features

Split continuous features by checking whether that feature is greater than
or less than some threshold.
Decision boundary is made up of axis-aligned planes.
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Decision Trees — Continuous Features

Internal nodes test a feature
Branching is determined by the feature value
Leaf nodes are outputs (predictions)
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Decision Trees — Continuous Features

Each path from the root to a leaf
defines a region '< of input space
Let
{(G (<1) , C (<1) ), ..., (G (<: ) , C (<: ) )}
be the training examples that fall
into '<

Classification tree (we will focus
on this):

Discrete output
Leaf value H< typically set to
the most common value in
{C (<1) , ..., C (<: ) }
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Decision Trees — Discrete Features

Will I eat at this restaurant?
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Decision Trees — Discrete Features

Split discrete features into a partition of possible values.
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Learning Decision Trees

For any training set we can construct a decision tree that has exactly one
leaf for every training point, but it probably won’t generalize.

Decision trees are universal function approximators.
But, finding the smallest decision tree that correctly classifies a training
set is NP-complete.

If you are interested, check: Hyafil & Rivest’76.
So, how do we construct a useful decision tree?
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Learning Decision Trees

Resort to a greedy heuristic:
Start with the whole training set and an empty decision tree
Pick a feature and candidate split that would most reduce the loss
Split on that feature and recurse on subpartitions

Which loss should we use?
Let’s see if the misclassification rate is a good loss.
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Choosing a Good Split

Consider the following data. Let’s split on width
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Choosing a Good Split

Recall: classify by majority.

A and B have the same misclassification rate, so which is the best split?
Vote!
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Choosing a Good Split

A feels like a better split, because the left-hand region is very certain
about whether the fruit is an orange.

Can we quantify this?
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Choosing a Good Split

How can we quantify uncertainty in prediction for a given leaf node?
If all examples in the leaf have the same class: good, low uncertainty
If each class has the same amount of examples in leaf: bad, high
uncertainty

Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.
A brief detour through information theory...

William & Mary CSCI 416 & 516 October 21, 2024 15 / 37



Choosing a Good Split

The entropy of a discrete random variable is a number that quantifies the
uncertainty inherent in its possible outcomes.
The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated.

If you’re interested, check: Information Theory by Robert Ash.
To explain entropy, consider flipping two different coins...
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We Flip Two Different Coins
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Quantifying Uncertainty

The entropy of a loaded coin with probability ? of heads is given by:

−?log2(?) − (1 − ?)log2(1 − ?) (1)

Notice: the coin whose outcomes are more certain has a lower entropy.
In the extreme case ? = 0 or ? = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.
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Quantifying Uncertainty

Can also think of entropy as the expected information content of a
random draw from a probability distribution.

Units of entropy are bits; a fair coin flip has 1 bit of entropy
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Choosing a Good Split

More generally, the entropy of a discrete random variable . is given by:

� (. ) = −
∑
H∈.

?(H)log2?(H) (2)

“High Entropy”:
Variable has a uniform like distribution over many outcomes
Flat histogram
Values sampled from it are less predictable

“Low Entropy”:
Distribution is concentrated on only a few outcomes
Histogram is concentrated in a few areas
Values sampled from it are more predictable
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Entropy

Suppose we observe partial information - about a random variable .
For example, - = sign(. )

We want to work towards a definition of the expected amount of
information that will be conveyed about . by observing - .

Or equivalently, the expected reduction in our uncertainty about . after
observing - .
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Entropy of a Joint Distribution

Example: - = {Raining, Not raining}, . = {Cloudy, Not cloudy}

� (-,. ) = −
∑
G∈-

∑
H∈.

?(G, H)log2?(G, H) (3)

� (-,. ) = − 24
100

log2
24
100
− 1

100
log2

1
100
− 25

100
log2

25
100
− 50

100
log2

50
100
(4)

� (-,. ) ≈ 1.56bits (5)
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Specific Conditional Entropy

Example: - = {Raining, Not raining}, . = {Cloudy, Not cloudy}

What is the entropy of cloudiness . , given that it is raining (- = raining)?

� (. |- = G) = −
∑
H∈.

?(H |G)log2?(H |G) (6)

� (. |- = G) = −24
25

log2
24
25
− 1

25
log2

1
25
≈ 0.24bits (7)

We used ?(H |G) = ? (G,H)
? (G) and ?(G) = ∑

H ?(G, H) (sum in a row)
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Conditional Entropy

Example: - = {Raining, Not raining}, . = {Cloudy, Not cloudy}

What is the entropy of cloudiness . , given the variable -?
The expected conditional entropy:

� (. |-) =
∑
G∈-

?(G)� (. |- = G) (8)

� (. |-) = −
∑
G∈-

∑
H∈.

?(G, H)log2?(H |G) (9)
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Conditional Entropy

Example: - = {Raining, Not raining}, . = {Cloudy, Not cloudy}

What is the entropy of cloudiness . , given the variable -?

� (. |-) =
∑
G∈-

?(G)� (. |- = G) (10)

� (. |-) = 1
4
� (cloudy|raining) + 3

4
� (cloudy|not raining) ≈ 0.75bits

(11)
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Conditional Entropy

Some useful properties:
� is always non-negative
Chain rule: � (-,. ) = � (- |. ) + � (. ) = � (. |-) + � (-)
if - and . are independent, then - does not affect our uncertainty about . :
� (. |-) = � (. )
By knowing . makes our knowledge of . certain: � (. |. ) = 0
By knowing - , we can decrease the uncertainty about . : � (. |-) ≤ � (. )
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Information Gain

Example: - = {Raining, Not raining}, . = {Cloudy, Not cloudy}

How much more certain am I about whether it’s cloudy if I’m told
whether it is raining? My uncertainty in . minus my expected
uncertainty that would remain in . after seeing - .
This is called the information gain �� (. |-) in . due to - , or the mutual
information of . and -

�� (. |-) = � (. ) − � (. |-) (12)
if - is completely uninformative about . : �� (. |-) = 0
if - is completely informative about . : �� (. |-) = � (. )
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Revisiting Our Original Example

Information gain measures the informativeness of a variable, which is
exactly what we desire in a decision tree split!
The information gain of a split: how much information (over the training
set) about the class label Y is gained by knowing which side of a split
you’re on.
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Revisiting Our Original Example

What is the information gain of split B? Not terribly informative...

Root entropy of class outcome: � (. ) = −2
7 log2

2
7 −

5
7 log2

5
7 ≈ 0.86

Leaf conditional entropy of class outcome: � (. |left) ≈ 0.81,
� (. |right) ≈ 0.92
�� (split) ≈ 0.86 − ( 47 · 0.81 + 3

7 · 0.92) ≈ 0.006
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Revisiting Our Original Example

What is the information gain of split A? Very informative!

Root entropy of class outcome: � (. ) = −2
7 log2

2
7 −

5
7 log2

5
7 ≈ 0.86

Leaf conditional entropy of class outcome: � (. |left) = 0,
ℎ(. |right) ≈ 0.97
�� (split) ≈ 0.86 − ( 27 · 0 +

5
7 · 0.97) ≈ 0.17!
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Constructing Decision Trees

At each level, one must choose:
Which particular feature to split
Possibly where to split it

Choose them based on how much information we would gain from the
decision! (choose the feature that gives the highest gain)
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Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node
pick a feature to split at a non-terminal node
split examples into groups based on a feature value
for each group:

if all examples in the same class – return class
else loop to step 1

Terminates when all leaves contain only examples in the same class or
are empty
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Back to Our Example
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Feature Selection

�� (Type) = 1−
[

2
12
� (. |Fr.) + 2

12
� (. |It.) + 4

12
� (. |Thai) 4

12
� (. |Bur.)

]
= 0

(13)

�� (Patron) = 1 −
[

2
12
� (. |None) + 4

12
� (. |Some) + 6

12
� (. |Full)

]
≈ 0.541

(14)
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Which Tree is Better? Vote!
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What Makes a Good Tree?

Not too small: need to handle important but possibly subtle distinctions
in data
Not too big:

Computational efficiency (avoid redundant, spurious attributes)
Avoid over-fitting training examples
Human interpretability

Occam’s Razor”: find the simplest hypothesis that fits the observations
Useful principle, but hard to formalize (how to define simplicity?)
See Domingos, 1999, “The role of Occam’s razor in knowledge discovery”

We desire small trees with informative nodes near the root

William & Mary CSCI 416 & 516 October 21, 2024 36 / 37



What Makes a Good Tree?

Problems:
You have exponentially less data at lower levels
Too big of a tree can overfit the data
Greedy algorithms don’t necessarily yield the global optimum

Handling continuous attributes
Split based on a threshold, chosen to maximize information gain

Decision trees can also be used for regression on real-valued outputs.
Choose splits to minimize squared error, rather than maximize
information gain.
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