Introduction to Machine Learning Decision Trees

Ashley Gao

William & Mary

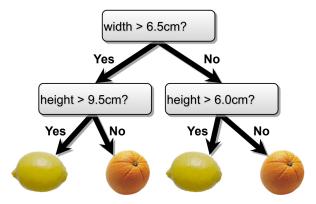
October 21, 2024

CSCI 416 & 516

- Decision Tree
 - Simple but powerful learning algorithm
 - Used widely in Kaggle competitions
 - Lets us motivate concepts from information theory (entropy, mutual information, etc.)
- Bias-variance decomposition
 - Lets us motivate methods for combining different classifiers.

Decision Tree

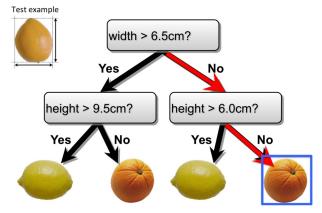
• Make predictions by splitting features according to a tree structure.



- - ∃ →

Decision Tree

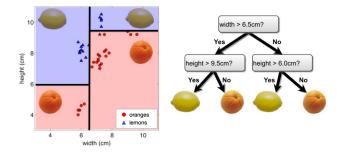
• Make predictions by splitting features according to a tree structure.



→ < ∃ →</p>

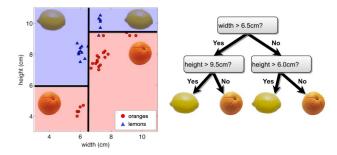
Decision Trees — Continuous Features

- Split continuous features by checking whether that feature is greater than or less than some threshold.
- Decision boundary is made up of axis-aligned planes.



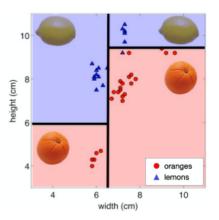
Decision Trees — Continuous Features

- Internal nodes test a feature
- Branching is determined by the feature value
- Leaf nodes are outputs (predictions)



Decision Trees — Continuous Features

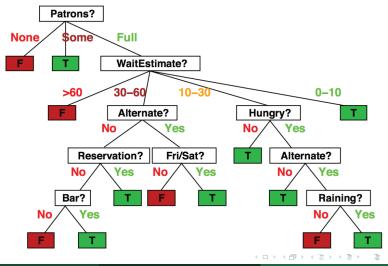
- Each path from the root to a leaf defines a region *R_m* of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), ..., (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m
- Classification tree (we will focus on this):
 - Discrete output
 - Leaf value y^m typically set to the most common value in $\{t^{(m_1)}, ..., t^{(m_k)}\}$



CSCI 416 & 516

Decision Trees — Discrete Features

• Will I eat at this restaurant?



Decision Trees — Discrete Features

• Split discrete features into a partition of possible values.

Example	Input Attributes									Goal	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = \mathit{No}$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
з.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Features:

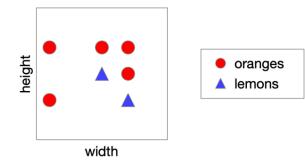
William & Mary

CSCI 416 & 516

- For any training set we can construct a decision tree that has exactly one leaf for every training point, but it probably won't generalize.
 - Decision trees are universal function approximators.
- But, finding the smallest decision tree that correctly classifies a training set is NP-complete.
 - If you are interested, check: Hyafil & Rivest'76.
- So, how do we construct a useful decision tree?

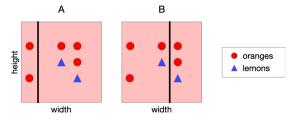
- Resort to a greedy heuristic:
 - Start with the whole training set and an empty decision tree
 - Pick a feature and candidate split that would most reduce the loss
 - Split on that feature and recurse on subpartitions
- Which loss should we use?
 - Let's see if the misclassification rate is a good loss.

• Consider the following data. Let's split on width



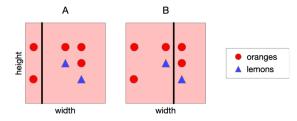
Choosing a Good Split

• Recall: classify by majority.



• A and B have the same misclassification rate, so which is the best split? Vote!

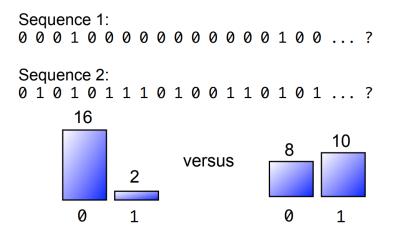
• A feels like a better split, because the left-hand region is very certain about whether the fruit is an orange.



• Can we quantify this?

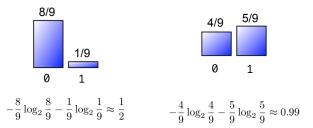
- How can we quantify uncertainty in prediction for a given leaf node?
 - If all examples in the leaf have the same class: good, low uncertainty
 - If each class has the same amount of examples in leaf: bad, high uncertainty
- Idea: Use counts at leaves to define probability distributions; use a probabilistic notion of uncertainty to decide splits.
- A brief detour through information theory...

- The entropy of a discrete random variable is a number that quantifies the uncertainty inherent in its possible outcomes.
- The mathematical definition of entropy that we give in a few slides may seem arbitrary, but it can be motivated.
 - If you're interested, check: Information Theory by Robert Ash.
- To explain entropy, consider flipping two different coins...



• The entropy of a loaded coin with probability *p* of heads is given by:

$$-p\log_2(p) - (1-p)\log_2(1-p)$$
(1)

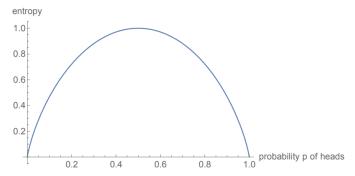


• Notice: the coin whose outcomes are more certain has a lower entropy.

• In the extreme case p = 0 or p = 1, we were certain of the outcome before observing. So, we gained no certainty by observing it, i.e., entropy is 0.

Quantifying Uncertainty

• Can also think of entropy as the expected information content of a random draw from a probability distribution.



• Units of entropy are bits; a fair coin flip has 1 bit of entropy

William	&	Mary	
---------	---	------	--

• More generally, the entropy of a discrete random variable *Y* is given by:

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y)$$
⁽²⁾

- "High Entropy":
 - Variable has a uniform like distribution over many outcomes
 - Flat histogram
 - Values sampled from it are less predictable
- "Low Entropy":
 - Distribution is concentrated on only a few outcomes
 - Histogram is concentrated in a few areas
 - Values sampled from it are more predictable

- Suppose we observe partial information *X* about a random variable *Y*
 - For example, X = sign(Y)
- We want to work towards a definition of the expected amount of information that will be conveyed about *Y* by observing *X*.
 - Or equivalently, the expected reduction in our uncertainty about *Y* after observing *X*.

Entropy of a Joint Distribution

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$
(3)

$$H(X,Y) = -\frac{24}{100}\log_2\frac{24}{100} - \frac{1}{100}\log_2\frac{1}{100} - \frac{25}{100}\log_2\frac{25}{100} - \frac{50}{100}\log_2\frac{50}{100}$$

$$H(X,Y) \approx 1.56$$
bits

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness *Y*, given that it is raining (*X* = raining)?

$$H(Y|X=x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$
(6)

$$H(Y|X=x) = -\frac{24}{25}\log_2\frac{24}{25} - \frac{1}{25}\log_2\frac{1}{25} \approx 0.24 \text{bits}$$
(7)

• We used $p(y|x) = \frac{p(x,y)}{p(x)}$ and $p(x) = \sum_{y} p(x, y)$ (sum in a row)

Conditional Entropy

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

- What is the entropy of cloudiness *Y*, given the variable *X*?
- The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X=x)$$
(8)

$$H(Y|X) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(y|x)$$
(9)

Conditional Entropy

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness *Y*, given the variable *X*?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X=x)$$
(10)

$$H(Y|X) = \frac{1}{4}H(\text{cloudy}|\text{raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining}) \approx 0.75\text{bits}$$
(11)

- Some useful properties:
 - *H* is always non-negative
 - Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - if *X* and *Y* are independent, then *X* does not affect our uncertainty about *Y*: H(Y|X) = H(Y)
 - By knowing Y makes our knowledge of Y certain: H(Y|Y) = 0
 - By knowing *X*, we can decrease the uncertainty about *Y*: $H(Y|X) \le H(Y)$

Information Gain

• Example: *X* = {Raining, Not raining}, *Y* = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

- How much more certain am I about whether it's cloudy if I'm told whether it is raining? My uncertainty in *Y* minus my expected uncertainty that would remain in *Y* after seeing *X*.
- This is called the information gain IG(Y|X) in *Y* due to *X*, or the mutual information of *Y* and *X*

$$IG(Y|X) = H(Y) - H(Y|X)$$
(12)

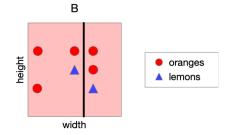
• if *X* is completely uninformative about *Y*: IG(Y|X) = 0

• if X is completely informative about Y: IG(Y|X) = H(Y) = H(Y) = 2000William & Mary CSCI 416 & 516 October 21, 2024 27/37

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree split!
- The information gain of a split: how much information (over the training set) about the class label Y is gained by knowing which side of a split you're on.

Revisiting Our Original Example

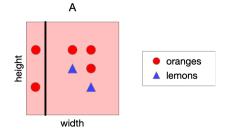
• What is the information gain of split B? Not terribly informative...



- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2\frac{2}{7} \frac{5}{7}\log_2\frac{5}{7} \approx 0.86$
- Leaf conditional entropy of class outcome: $H(Y|\text{left}) \approx 0.81$, $H(Y|\text{right}) \approx 0.92$
- $IG(\text{split}) \approx 0.86 (\frac{4}{7} \cdot 0.81 + \frac{3}{7} \cdot 0.92) \approx 0.006$

Revisiting Our Original Example

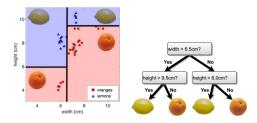
• What is the information gain of split A? Very informative!



- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2\frac{2}{7} \frac{5}{7}\log_2\frac{5}{7} \approx 0.86$
- Leaf conditional entropy of class outcome: H(Y|left) = 0, $h(Y|\text{right}) \approx 0.97$
- $IG(\text{split}) \approx 0.86 (\frac{2}{7} \cdot 0 + \frac{5}{7} \cdot 0.97) \approx 0.17!$

Constructing Decision Trees

- At each level, one must choose:
 - Which particular feature to split
 - Possibly where to split it
- Choose them based on how much information we would gain from the decision! (choose the feature that gives the highest gain)



- Simple, greedy, recursive approach, builds up tree node-by-node
 - pick a feature to split at a non-terminal node
 - split examples into groups based on a feature value
 - for each group:
 - if all examples in the same class return class
 - else loop to step 1
- Terminates when all leaves contain only examples in the same class or are empty

Back to Our Example

Example	Input Attributes								Goal		
Linnipio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Y_{es}$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
з.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

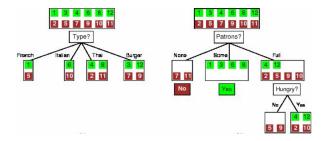
Features:

William & Mary

CSCI 416 & 516

< □ > < □ > < □</p>

Feature Selection

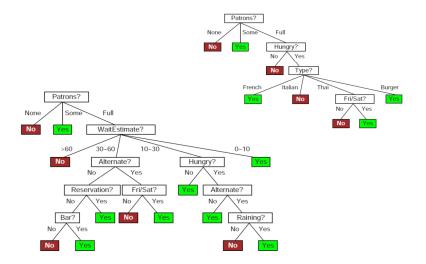


$$IG(\text{Type}) = 1 - \left[\frac{2}{12}H(Y|\text{Fr.}) + \frac{2}{12}H(Y|\text{It.}) + \frac{4}{12}H(Y|\text{Thai})\frac{4}{12}H(Y|\text{Bur.})\right] = 0$$
(13)

$$IG(Patron) = 1 - \left[\frac{2}{12}H(Y|None) + \frac{4}{12}H(Y|Some) + \frac{6}{12}H(Y|Full)\right] \approx 0.541$$

$$(14)$$
William & Mary CSCI416 & 516 October 21, 2024 34/37

Which Tree is Better? Vote!



CSCI 416 & 516

イロト イポト イヨト イヨト

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- Occam's Razor": find the simplest hypothesis that fits the observations
 - Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

What Makes a Good Tree?

• Problems:

- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
 - Split based on a threshold, chosen to maximize information gain
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.