Introduction to Machine Learning

Ensemble Learning

Ashley Gao

William & Mary

October 28, 2024

William & Mary CSCI 416 & 516 October 28, 2024



Ensemble Learning

@ Consider a set of classifiers Ay, ..., hy

@ Idea: construct a classifier H(x) that combines the individual decisions
of hy,...,hp
o e.g. could have the member classifiers vote
e e.g. could use different members for different regions of the instance space
o works well if the members each have low error rates
@ Successful ensembles require diversity

o Classifiers should make different mistakes
o Can have different types of base learners
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Practical Application: Netflix Prize

@ Goal: predict how a user will rate a movie

o Based on the user’s ratings for other movies
o and other people’s ratings
e with no other information about the movies

@ This application is called “collaborative filtering”

@ Netflix Prize: $1M to the first team to do 10% better than the Netflix’
system (2007-2009)

@ Winner: Bellkor’s Pragmatic Chaos
o An ensemble of more than 800 rating systems

NETFLIX
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Combining Classifiers: Averaging

o Final hypothesis is a simple vote of the members

= —> H(x)
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Combining Classifiers: Weighted Averaging

@ Coefficients of individual members are tuned using a validation set

+ —> H(x)
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Combining Classifiers: Gating

@ Coefficients of individual members depend on the input
@ Train gating function via the validation set

PR
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Combining Classifiers: Stacking

@ Predictions of the first layer used as input to the second laer

@ Train the second layer on the validation set

C =>H(x)

2" Layer
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How to Achieve Diversity

Cause of the Mistake Diversification Strategy
Pattern was difficult Hopeless
Overfitting Vary the training sets

Some features are noisy  Vary the set of input features
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Manipulating the Training Data

@ Bootstrap replication

e Given n training examples, construct a new training set by sampling n
instances with replacement
o Exclude about 30% of the training instances
@ Bagging
Create bootstrap replicates of the training set
Train a classifier (e.g. a decision tree) for each replicate

o
o Estimate classifier performance using out-of-bootstrap data
o Average output of all classifiers

@ Boosting
o (in just a minute ...)
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Manipulating the Features

@ Random Forest
o Construct decision trees on bootstrap replicas
@ Restrict the node decisions to a small subset of features picked randomly for
each node
e Do not prune the rees
o Estimate tree performance on out-of-bootstrap data
o Average the output of all trees

o

DECI!ION TREE- ususwu TREE-1 nsusmu TREE-1

RESULT-1 RESULT-2 RESULT-N

|—v| MAJORITY VOTING / AVERAGING |0—|

FINAL RESULT
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Boosting
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AdaBoost

@ Developed by Freund & Schapire in 1997

@ A meta-learning algorithm with great theoretical and empirical
performance

o Turns a base learner (e.g. “weak hypothesis”) into a high performance
classifier

o Create an ensemble of weak hypotheses by repeatedly emphasizing
mispredicted instances
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Weak Learners and Classifiers

@ (Informal) A weak learner is a learning algorithm that outputs a
hypothesis (e.g. a classifier) that performs slightly better than chance.

e e.g. it predicts the correct label with probability 0.51 in binary label case
@ We are interested in weak learners that are computationally efficient

e Decision tree
e Even simpler - decision stumps: Decision trees with a single split
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Weak Classifiers

@ Suppose these are the data

o These weak classifiers, which are decision stumps, consist of the set of
horizontal and vertical half-spaces.

Vertical half spaces Heorizontal half spaces
+ +
+H + - + + o
+ | - + - _
+ - + -
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Weak Classifiers

o A single weak classifier is not capable of making the training error small
o But if we can guarantee that it performs slightly better than chance

o Using it with AdaBoost gives us a universal function approximator

Vertical half spaces Horizontal half spaces
+ +
H + - + q
+ 7| - + - -
+ - + -

@ Now let’s see how AdaBoost combines a set of weak classifiers in order
to make a better ensemble of classifiers...
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AdaBoost

@ The size of a point or instance represents the instance’s weight

‘ 1: Initialize a vector of n uniform weights w N
2:fort=1,...,T ' ()
3 Train model hy on X,y with weights w; — @

4 Compute the weighted training error of hy
5: Choose 3 = %ln (1;“) Q
6 Update all instance weights: @ @
w1 = wy; exp (—Buyiha(x:)) @
7:  Normalize w;, to be a distribution . -
8: end for v
9: Return the hypothesis @
T @
H(x) = sign (z ,[i'thi(x)) @
t=1
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AdaBoost

1: Initialize a vector of n uniform weights wy N
2: fort=1,...,T l‘= 1 @
3: Train model h; on X,y with weights w; - )
4: Compute the weighted training error of h;
5: Choose gy = %ln 1:—1“ Q
6: Update all instance weights: @ )
w1 i = Wy, exp (=Bt (x;)) @
7 Normalize w,;; to be a distribution . e
8: end for @
9: Return the hypothesis ]
T @
H(x) = sign (Z ﬂ!hi(x)) @
t=1
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AdaBoost

1: Initialize a vector of n uniform weights w g N
2: fort=1,...,T l‘=1 +1— @
3:  Train model hy on X,y with weights w, — I (]
1: Compute the weighted training error of h; v :
5: Choose 3 = %ln (1;“) Q 1
6: Update all instance weights: @ [} -
Wypq,; = wy; exp (—Byih(%;)) @ :
7:  Normalize w;yy to be a distribution PR -
8: end for @ ]
9: Return the hypothesis 1 @
T @ .
H(x) = sign (Z ﬂthl(x)) 1 ©
t=1 1
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AdaBoost

@ [3; measures the importance of A,
o if ¢, < 0.5 then B; > 0 (can trivially gurantee)

1: Initialize a vector of n uniform weights w; g
2:fort=1,....,T t=1 +1

3: Train model h; on X.y with weights wy ® "
I
1

Compute the weighted training error of hy

1

4:

5: Choose By = 51n (%) /_\

t ) L 4 _

G: Update all instance weights: (] I ®
Wi = Wi exp (~Brih(x:)) P i

7:  Normalize w;y, to be a distribution B :
8: end for v 1
I @
|
1
1

9: Return the hypothesis
LY P o

T
H(x) = sign (Z ,(ithl(x))

i=1
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AdaBoost

@ Weights of correct predictions are multiplied by e# < 1

@ Weights of incorrect predictions are multiplied by e#* > 1

1: Initialize a vector of n uniform weights w; + d -
=1 — @

2:fort=1,...,T
Train model h; on X,y with weights wy — )
Compute the weighted training error of h, b :
Choose 3; = %ln (%) -

£ - L -
L 4

D B

Update all instance weights:
W1 = wy s exp (—Beyiha(x:)) ¢

7 Normalize w;, to be a distribution . -
8: end for v
9: Return the hypothesis .
T @
H(x) = sign (Z ,Bthi(x)) 1 ©

[

t=1

I
I
1

1
1
1
1
1
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AdaBoost

@ Note: resized points in the illustration are not necessarily to scale with S,

1: Initialize a vector of n uniform weights w
2:fort=1,....T l‘=1 +i1— ()
3 Train model h; on X,y with weights w; ® I 9
4: Compute the weighted training error of hy :
5: Choose 3 = %ln (% P
¢ L —
6: Update all instance weights: O I (]
Wi41,i = Wy €XP (_ﬁtyihi(xi)) @ :/,.,\
7:  Normalize w;, to be a distribution o “
8: end for | “
9: Return the hypothesis I @
T @ b
H(x) = sign (Z ,Bthl(x)) 1 ©
t=1 L
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AdaBoost

1: Initialize a vector of n uniform weights w; "
2: fort=1,....,T t_z +1
3: Train model hy on X,y with weights wy _ I
Compute the weighted training error of h, b "

1

4:
5: Choose 3 = %ln (ﬂ)
“ @ _
6 Update all instance weights: Q I \')
Wit1,4 = Wi, €XP (_Bz'yihi(xi))

8: end for
9: Return the hypothesis Q

T
H(x) = sign (Z ,(ithl(x})

i=1

]

I

7:  Normalize w;, to be a distribution |

@

I

1

1

]

L
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AdaBoost

1: Initialize a vector of n uniform weights w .
2: fort=1,...,T l‘=2 +1— ®
3 Train model h; on X,y with weights w;, | ® I @
4: Compute the weighted training error of hy | :
A
5:  Choose 8, = %ln (%) A @ I
; {hta o - &
6:  Update all instance weights: N | ()
Wy, = Wy exp (—Beyihe(x;)) s + ,' .
7:  Normalize w4 to be a distribution h e |
8: end for N
. : , N, -
9: Return the hypothesis Q l\ @
T [N
H(x) = sign Z Bihe(x) (AN .
t=1 1
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AdaBoost

@ [3; measures the importance of A,
o if ¢ < 0.5 then 8; > 0 (can trivially gurantee)

1: Initialize a vector of n uniform weights wy C
2:fort=1,....,T l‘=2 +i1— @
3: Train model h; on X,y with weights wy ® I @
4: Compute the weighted training error of k| © "
S
5. Choose §; = %ln (1:—1“) A @ I
o o O\ b PN
G: Update all instance weights: N I @
Wit1 = wy i exp (—Biyiki(x)) e + :Q
7 Normalize w;, to be a distribution N e |
8: end for N
9: Return the hypothesis O \l\ @
T I\
H(x) = sign Z Bihi(x) 1 O~ .
t=1 L
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AdaBoost

@ Weights of correct predictions are multiplied by e #* < 1

@ Weights of incorrect predictions are multiplied by ef > 1

1: Initialize a vector of n uniform weights w, i
2: fort=1,...,T =2 +1— @
3: Train model h; on X,y with weights w; ® I @
e Compute the weighted training error of hy s "
N
5: Choose §3; = %ln (1:—;5) A @ |
: S— o o .
6 Update all instance weights: N 1 (]
wWyip1,i = wy; exp (—Byyihy(x;)) \b\3 " —
7:  Normalize w;, to be a distribution > :t. 1 v
8: end for N
9: Return the hypothesis —~ \l\ @
T Q ] ~
H(x) = sign (Z [i!hi(x)) 1 @5
t=1 1 N
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AdaBoost

1: Initialize a vector of n uniform weights w, PRIy )
2 fort=1,...,T L \\\l \ |
3: Train model h; on X,y with weights w; V1 g WA g P
4: Compute the weighted training error of hy \‘ I L'J _hq'\qr -
N ] - ~
. =1 l-e [~ - ~
5: Choose f3; = 3 ln( - ) \\\ 1 (T o | AN N
6:  Update all instance weights: | NI N + @ W <
g — _ . . NS 7 ~ ] \ b g
i1 = wy; exp (—Buyihn(x:)) R bl SN et Y
7 Normalize w;1 to be a distribution - N e \
+ I“+~\ d_ 20 R
8: end for == T7\= =£91'.|:..\_\~__
N~ 2~
9: Return the hypothesis PR 1 P AR N
T - oS T
] l, NN ~ e
H(x) = sign Zﬂlh!(x)) a1 ] @ <\
=1 PR | L b i
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AdaBoost

o Final model is a weighted combination of members
o Each member weighted by its importance

1: Initialize a vector of n uniform weights w; LN "\
Sa N
2: fort=1,...,T ' \\\l\ ® |
3: Train model h; on X,y with weights wy 1 g PR
4: Compute the weighted training error of hy v “ L ; _hq'\if -
. N\ ] - ~
5:  Choose 3 = 3 In (lc—ib) \\\ T ,0’, R \: o
6: Update all instance weights: ° ;,‘H-’ -+ Q \,\’
5 ~
Wig1i = Wi i exp (—PBeyihe(x;)) ,.:’\’ "‘Q o ) + \, Y:_\a
-~ + ~ Q s\ -
7 Normalize w;;, to be a distribution - |§\ DY s
N\ - ~ N
8: end for - - = \—'};3;1'1'._‘_\_
T gy -
9: Return the hypothesis AT AR N ~_ 0~
z T EA AN EN
H(x) = sign (Z,{ighi(x)) 210 1 @8 Y
t=1 L [l A Sy
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AdaBoost

INPUT: training data X,y = {(x;,v:)}1" .
the number of iterations 7'
1: Initialize a vector of n uniform weights w; = [1
2: fort=1,...,T
3: Train model hy on X,y with instance weights wy
4: Compute the weighted training error rate of h,:

€ = Z Wi i
iR ()
5:  Choose f; = L1n l%fk
6: Update all instance weights:
wir1, = weiexp (—Bwyihe(xi)) Yi=1,...,n

7 Normalize w; to be a distribution:
Wy, .
Wiy, = —ht =1 .0
Z}:] Wi41.5
8: end for

9: Return the hypothesis

T
H(x) = sign (Z {ilhl(x))

—1

William & Mary

et

w, is a vector of weights
over the instances at
iteration ¢

All points start with equal
weight
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AdaBoost

INPUT: training data X,y = {(x;, )}y,
the number of iterations T'

1: Initialize a vector of n uniform weights w; = [717, e ﬂ
2: fort=1,...,T
3 Train 111\0_(_13_17 _hl on X,y with instance weights w;
4: Compute the Wergited training error rate of hy:
€ = Z Wi 77_7_77-\_;:';“”_” —
iyith (x3) We need a way to weight instances
5:  Choose 3, = L1n (1%) differently when learning the model...

6: Update all instance weights:
Wi, = Wi exp (—Gryihe(x:)) Vi=1,....n

T Normalize wy; to be a distribution:
Wet1,i

~n . Yi= 1,.‘.,71.
Zj:l Wi+1,5

Wil =

8: end for
9: Return the hypothesis

T
H(x) = sign (Z ,Blht(x))
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Training with Weighted Instances

o For algorithms like logistic regression, can simply incorporate weights w
into the cost function

o Essentially, weigh the cost of misclassification differently for each instance

Treg(0) = — Z wilyiloghg(x;) + (1 — y)log(l — hg(x:)] + A0 [1.a1 11
i=1
(1)

@ For algorithms that don’t directly support instance weights (e.g. decision
trees), use weighted bootstrap sampling

o Form training set by resampling instances with replacement according to w
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Bse Learner Requirements

@ AdaBoost works with “weak” learners

e Should not be complex
o Typically high-bias classifiers
o Works even when the weak learner has an error rate just slightly under 0.5
o i.e. just slightly better than random
@ Can prove training error goes to 0 in O(logn) iterations
e Examples

e Decision stumps (1 level decision trees)
o Depth-limited decision trees
o Linear classifiers
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AdaBoost

INPUT: training data X,y = {(x;, )},
the number of iterations T'

1: Initialize a vector of n uniform weights w; = [%, el %]
2: fort=1,...,T
3: Train model hy on X,y with instance weights wy
4: Compute the weighted training error rate of hy:
€ = Z W 4 _— |
Gy (x) ~—__ Error is the sum the weights of all
5: Choose f, = $In (12) misclassified instances

Update all instance weights:

Wit1,i = Wy, exp (—Fyihe(x)) Vi=1,....n

7 Normalize w, 1 to be a distribution:
Wi+1.i .
Wiyl = = Vlzl,.“ﬁ’n
2o WL
8: end for

9: Return the hypothesis

T
H(x) = sign (Z ,Blht(x))

t=1
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AdaBoost

INPUT: training data X,y = {(x;, 1)},
the number of iterations T'
1: Initialize a vector of n uniform weights w, = [717, e
2: fort=1,...,.T
3: Train model h; on X,y with instance weights wy
4: Compute the weighted training error rate of hy:
€t = Z Wi
iryiFEhe (%)
Choose 3, = L1In (l%:t) —

-
[

)
Update all instance weights

* S, measures the importance of A,
* If ¢<05,then 5t >0

wWit1,i = Wi exp (—Beyihe|

T: Normalize w to be a dist L. X ) o
Lﬁuﬂ o Trivial, otherwise flip k,'s predictions
Pi= =V ‘ -
v = s Ve By grows as error fy's shrinks
8: end for

9: Return the hypothesis

T
H(x) =sign (Z .Blhl(x))

t=1
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AdaBoost

INPUT: train
the nl

- will be <1
This is the same as: 3,
— B¢ - N
1: Initialize a vect € J lf h‘t (X?.) =Y

w i — We,q X .
2:fort=1,...,T 2Ty it E‘St if ht(xz) 7£ Yi

3: Train model )
4:  Compute the will be > 1

>

im« ESSentially this emphasizes misclassified instances.
5: Choose 3; =

2 e ) -~

6: Update all instance weights:

Wit1,i = Wy exp (—Fyihi(x;)) Vi=1,....n
7 Normalize w;; to be a distribution:

w
TUL+1;5:# vi:].,.“*’l’l
Zj:l We+1.j

8: end for

9: Return the hypothesis

T
H(x) = sign Z Birh(x)
=1
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AdaBoost

INPUT: training data X,y = {(x;, 1)},
the number of iterations 7°
1: Initialize a vector of n uniform weights wqi = [%, ey
2: fort=1,...,T
3: Train model h; on X,y with instance weights wy
4 Compute the weighted training error rate of h;:
€ = Z W i
iryiFEhe (%)
5: Choose 5, = 4In (%) Make w,, sum to 1

7

Sl=
i

6: Update all instance weights:
Wi, = weiexp (—Faphe(xi)) Yi=1,...,n
T Normalize wy; to be a distribution:

Wi+1,i

wa+1,z’=z Yi=1,...,n

et
j=1 Wt+1,j

8: end for

9: Return the hypothesis

T
H(x) = sign (Z fiihl(x))
=1
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AdaBoost

INPUT: training data X,y = {(x;, )},
the number of iterations T'
1: Initialize a vector of n uniform weights w, = [% ce
2: fort=1,...,T
3: Train model h; on X,y with instance weights wy
4: Compute the weighted training error rate of hy:

€ = Z Wi
iyi#he(xi)
5:  Choose f; = {In (l%:t)
Update all instance weights:
wigr s = wy;exp(—Fuhe(x))  Vi=1,| Member classifiers with less
7:  Normalize w; ; to be a distribution: error are given more weight in
the final ensemble hypothesis

==
i

W10

w i ==
Wt+1,4 z}le Wit | o - ‘
8 end for _~ Final prediction is a weighted

9: Return the hypothesis < combination of each
T
H(x) = sign (Z mhl(x)) / member’s prediction

t=1

Vi=1,...,n
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Dynamic Behavior of AdaBoost

o If a point is repeatedly misclassified
o Each time, its weight is increased
o Eventually it will be emphasized enough to generate a hypothesis that
correctly predicts it
@ Successive member hypotheses focus on the hardest part of the instance
space
o Instances with the highest weight are often outliers

William & Mary CSCI 416 & 516 October 28, 2024 37/41



AdaBoost and Overfitting

@ The VC (Vapnik-Chervonenkis) theory originally predicted that
AdaBoost would always overfit as T grew large

o Hypothesis keeps growing more complex
o In practice, AdaBoost often did not overfit, contradicting the VC Theory

@ Also, AdaBoost does not explicitly regularize the model
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Explaining Why AdaBoost Works

e Empirically, boosting resists overfitting

@ Note that it continues to drive down the test error even after the training
error reaches zero

20

1 AdaBoost on OCR data with

C4.5 as the base learner

-

percent error

10 100 1000
rounds of boosting
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AdaBoost in Practice

o Strengths:
o Fast and simple to program
e No parameters to tune (besides T)
o No assumption on weak learner
@ When boosting can fail:
o Given insufficient data
Overly complex weak hypotheses

°
o Can be susceptible to noise
o When there are a large number of outliers
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Boosted Decision Tree

@ Boosted decision trees are one of the best “off-the-shelf” classifiers
@ i.e. no parameter tunning

o Limit member hypothesis complexity by limiting tree depth

“AdaBoost with trees is the best off-the-shelf classifier in the world”
- Breiman

@ Also, see results by Caruana & Niculescu-Mizil, ICML 2006
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