Introduction to Machine Learning Convolutional Neural Networks

Ashley Gao

William & Mary

November 13, 2024

 $\begin{array}{c} \leftarrow \quad \quad \text{if} \quad \$

 OQ

- What makes vision hard?
	- Vision needs to be robust to a lot of transformations or distortions
		- Change in pose or viewpoint
		- Change in illumination
		- **Deformation**
		- Occlusion (some objects are hidden behind others)
	- Many object categories can vary wildly in appearance (e.g. chairs)
	- Geoff Hinton: "Imaging a medical database in which the age of the patient sometimes hops to the input dimension which normally codes for weight!"

Overview

• Recall we looked at some hidden layer features for classifying handwritten digits:

 $\begin{array}{c} \leftarrow \quad \text{ } \quad \text{ }$

 $2Q$

Overview

• Suppose we want to train a network that takes a 200×200 RGB image as the input.

• What is the problem with having this as the first layer?

- Too many parameters! Input size $= 200 \times 200 \times 3 = 120$ K. Parameters $= 120K \times 1000 = 120$ million.
- What happens if the object in the image shifts a little?

- The same sorts of features that are useful in analyzing one part of the image will probably be useful for analyzing other parts as well
	- E.g. edges, corners, contours, object parts
- We want a neural net architecture that lets us learn a set of feature detectors that are applied at all image locations

- So far, we have seen this type of layers:
	- Fully connected layers
- Different layers could be stacked together to build powerful models
- Let's add another layer type: the convolution layer

 \leftarrow \Box \rightarrow

Fully Connected Layers

• Fully connected layers:

 \leftarrow

Each hidden unit looks at the entire image

 OQ

• Locally connected layers:

Each column or set of hidden units looks at a small region of the image

 \leftarrow

Convolution Layers

Convolution layers:

Each column or set of hidden units looks at a small region of the image, and the weights are shared between all image locations

 \leftarrow

Going Deeply Convolutional

• Convolution layers can be stacked:

 \leftarrow \Box \rightarrow \sim \rightarrow OQ

- We have been vectorizing our computations by expressing them in terms of matrix and vector operations for computational efficiency
- Now we introduce a high-level operation, convolution.
	- The motivation is not computational efficiency
	- Rather, the motivation is to get some understanding of what convolution layers can do

Let's look at the 1-D case first.

 \leftarrow \Box \rightarrow

Convolution can also be viewed as matrix multiplication

$$
(2,-1,1)*(1,1,2)=\begin{pmatrix}1\\1&1\\2&1&1\\2&1\\2&2\end{pmatrix}\begin{pmatrix}2\\-1\\1\end{pmatrix}
$$

 OQ

 4 ロ } 4 何 } 4 子 } 4

- Some properties of convolution
	- Commutativity

$$
a * b = b * a \tag{1}
$$

• Linearity

$$
a * (\lambda_1 b + \lambda_2 c) = \lambda_1 a * b + \lambda_2 a * c \tag{2}
$$

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow

 $2Q$

2-D Convolution

Here is an example of 2-D convolution, which we will use in computer vision

 \leftarrow \Box \rightarrow \sim $2Q$

- The thing we convolve by is called a kernel, or filter
- What does this convolution kernel do?

 \leftarrow \Box \rightarrow

What does this convolution kernel do?

 \ast

 $\mathcal{A} \cdot \Box \quad \mathcal{P} \quad \mathcal{A}$

←■→

 OQ

• What does this convolution kernel do?

 \ast

 \leftarrow \Box \rightarrow \sim OQ

- Let's finally turn to convolutional networks.
	- Detection layers (or convolutional layers)
	- Pooling layers
- The convolution layer has a set of filters.
	- Its output is a set of feature maps, each one obtained by convolving the image with a filter.

Example first-layer filters

(Zeiler and Fergus, 2013, Visualizing and understanding

convolutional networks)

 \leftarrow \Box \rightarrow

٠

- It's common to apply a linear rectification nonlinearity: $y_i = \max(z_i, 0)$
	- Two edges in opposite directions shouldn't cancel

Pooling Layers

- The other type of layer is the pooling layer.
	- These layers reduce the size of the representation and build invariance to small transformations

- Most commonly, we use max-pooling
	- Which computes the maximum value of the units in a pooling group

$$
y_i = \max_{j \in J} z_j \tag{3}
$$

\bullet A more holistic view on the CNN(s):

 \leftarrow \Box \rightarrow \sim \rightarrow $2Q$

Because of pooling, higher-layer filters can cover a larger region of the input than equal-sized filters in the lower layers

 \leftarrow \Box \rightarrow

- We said the network's responses should be robust to the translation of the input. But this can mean two different things
	- Convolution layers are equivariant: it you translate the inputs, the outputs are translated by the same amount.
	- We'd like the network to be invariant: if you translate the inputs, the prediction should not change
	- Pooling layers provide invariance to small translation

- Each layer consists of several feature maps, each of which is an array
	- For the input layer, the feature maps are usually called channels
	- If the input layer represents a grayscale image, it has 1 channel.
- Each unit is connected to each unit within its receptive field in the previous layers.
	- This includes all of t he previous layer's feature maps.

Convolution Layers

- For simplicity, focus on 1-D signals (e.g. audio waveforms). Suppose the convolution layer's input has J feature maps and its output has I feature maps. Let t index the locations. Suppose the convolution kernels have radius R, i.e. dimension $K = 2R + 1$.
- Each unit in a convolution layer receives inputs from all the units in its receptive field in the previous layer:

$$
y_{i,t} = \sum_{j=1}^{J} \sum_{\tau=-R}^{R} w_{i,j,\tau} x_{j,t+\tau}
$$
 (4)

- How do we train a conv net? With backprop, of course!
- Recall what we need to do. Backprop is a message passing procedure, where each layer knows how to pass messages backwards through the computation graph. Let's determine the updates for convolution layers.
- We assume we are given the loss derivatives $\overline{y_{i,t}}$ with respect to the output units.
- We need to compute the cost derivatives with respect to the input units and with respect to the weights.

• Consider the computation graph for the inputs:

Each input unit influences all the output units that have it within their \bullet receptive fields. Using the multivariate Chain Rule, we need to sum together the derivative terms for all these edges.

Backpropagation Update

• Recall the formula for the convolution layer:

$$
y_{i,t} = \sum_{j=1}^{J} \sum_{\tau=-R}^{R} w_{i,j,\tau} x_{j,t+\tau}
$$
 (5)

We compute the derivatives, which requires summing over all the output units which have the input unit in their receptive field:

$$
\overline{x}_{j,t} = \sum_{\tau} \overline{y}_{i,t-\tau} \frac{\partial y_{i,t-\tau}}{\partial x_{j,t}} \tag{6}
$$
\n
$$
\overline{x}_{j,t} = \sum_{\tau} \overline{y}_{i,t-\tau} w_{i,j,\tau} \tag{7}
$$

• Written in terms of convolution,

$$
\overline{x}_j = \overline{y}_i * w_{i,j} \tag{8}
$$

Image Classification

Ξ

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow

 OQ

Overview

- Object recognition is the task of identifying which object category is present in an image
- It is challenging because objects can differ widely in position, size, shape, appearance, etc., and we have to deal with occlusions, lighting changes, etc.
- Why we care about it
	- Direct application to image search
	- Closely related to object detection, the task of locating all instances of an object in an image
		- e.g. a self-driving car detecting pedestrians or stop signs
- \bullet For the past 5-10 years, all the best object recognizers have been various kinds of conv nets and an architecture we called the Transformer
	- We will cover Transformers later in this class

- In order to train and evaluate a machine learning system, we need to collect a dataset
	- The design of the dataset can have major implications
- Some questions to consider:
	- Which classes to include?
	- Where should the image come from?
	- How many images to collect?
	- How to normalize (preprocess) the images?

Image Classification

- Conv nets are just one of many possible approaches to image classification
	- However, they have been successful and now become a classical approach in the deep learning era
- Biggest image classification "advances" of the lasst two decades
	- Datasets have gotten much larger (because of digital cameras and the Internet)
	- Computers got much faster
		- Graph processing units (GPUs) turned out to be really good at training big neural nets
		- Generally, about 30 times faster than CPUs
	- As a result, we could fit bigger and bigger neural nets

MNIST Dataset

• MNIST dataset of handwritten digits

- Categories: 10 digit classes
- Source: Scans of handwritten zip codes from envelopes
- Size: 60,000 training images and 10,000 test images, grayscale, of size 28×28
- Normalization: centered within the image, scaled to a consistent size
	- The assumption is that the digit recognizer would be part of a larger pipeline that segments and normalizes images
- In 1998, Yann LeCun and colleagues built a conv net called LeNet which was able to classify digits with 98.9% test accuracy
	- It was good enough to be used in a system for automatically reading numbers on checks

Calltech101

- Caltech101 was the first major object recognition dataset, collected in 2003
- Design decisions:
	- Categories: 101 object categories; open the dictionary to random pages and select from nouns that were associated with images
	- Source: find candidates with Google Image Search, hand-select the ones that actually represent the object category
	- Number of examples: as many as possible per category
		- Most machine learning benchmarking is done using a fixed number of training examples per category (usually between 1 and 20)
	- Normalization:
		- Scale to be 300 pixels wide
		- Flip so that the object is facing the same direction
		- Rotate certain object categories because their proposed algorithm couldn't handle vertical objects

 Ω

イロト イ母 トイヨ トイヨト

目

 OQ

イロトス部 トメミトメミト

Calltech101

- Beware of dataset biases
	- These are idiosyncrasies of a dataset resulting from how it was collected or normalized
- An algorithm can appear to have good training and testing error, but fail to generalize if the training data doesn't resemble the real world
- E.g. in Caltech101, the sizes and locations of the images are a lot m ore regular than you would expect in the "real world"

Calltech101

- There were lots of works on Caltech101 for 5 years or so
	- It quickly became clear that dataset biases made it too gameable
- By contrast, MNIST is still a productive source of insights after 20 years of its introduction!

 \leftarrow \Box \rightarrow

ImageNet

- ImageNet is the modern object recognition benchmark dataset
	- It was introduced in 2009 and has led to amazing progress in object recognition since then

 Ω

∢ ロ ▶ ∢ 何 ▶ ∢

ImageNet

- Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). an annual benchmark competition for object recognition algorithms
- Design decisions:
	- Categories: Taken from a lexical database called WordNet
		- WordNet consists of "synsets" or sets of synonymous words
		- They tried to use as many of these as possible; almost 22,000 as of 2010
		- Of these, they chose the 1000 most common for the ILSVRC
		- The categories are really specific, e.g. hundreds of kinds of dogs
	- Size: 1.2 million full-sized images for the ILSVRC
	- Source: Results from image search engines, hand-labeled
		- Labeling such specific categories was challenging; annotators had to be given the WordNet hierarchy, Wikipedia, etc.
	- Normalization: none, although the contestants are free to do preprocessing

 Ω

イロト イ押 トイヨ トイヨト

- Here's the LeNet architecture, which was applied to handwritten digit recognition on MNIST in 1998
	- In the image, subsampling equates to pooling

イロト イ押 トイヨ トイヨト

 OQ

 \equiv

 QQQ

イロトイ部 トイモトイモト

AlexNet, 2012. 9 Weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to guess the right category)

- They used lots of tricks to train NN
	- ReLU units, weight decay, data augmentation, SGD, dropout
- AlexNet's stunning performance on the ILSVRC is what set off the deep learning boom of the last 5-10 years

GoogLeNet

- GoogLeNet, 2014
- 22 weight layers
- Fully convolutional (no fully connected layers)
- **Convolutions are broken down** into a bunch of smaller convolutions
- 6.6% test error on ImageNet

Classification

• ImageNet results over the years. Note that errors are top-5 errors

- Human performance is around 5.1%
- They stopped running the object recognition competition because the performance is already so good

 \leftarrow \Box \rightarrow