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Overview

o It is still challenging to generate long sequences when the decoders only
has access to the final hidden states from the encoder
e Machine translation: it’s hard to summarize long sentences in a single
vector, so let’s allow the decoder to peek at the input
e Vision: have a network glance at one part of an image at a time, so that we
can understand what information it’s conveying

@ This lecture will introduce attention that drastically improves the
performance on the long sequences
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Attention-based Machine Translation

@ This RNN architecture can be used for machine translation:
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@ The network reads a sentence and stores all the information in its hidden
units

@ Some sentences can be really long. Can we really store all the
information in a vector of hidden units?
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Attention-based Machine Translation

@ We’ll look at the translation model from this classic paper
o Bahdanau et al., Neural machine translation by jointly learning to align
and translate. ICLR, 2015
@ Basic idea: each output word comes from one word, or a handful of
words, from the input
e Maybe we can learn to attend to only the relevant ones as we produce the
output
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Attention-based Machine Translation

@ The model has both an encoder and a decoder. The encoder computes an
annotation of each word in the input.

o It takes the form of a bidirectional RNN

o This just means we have an RNN that runs forward and an RNN that runs
backward, and we concatenate their hidden vectors

o The idea: information earlier or later in the sentence can help
disambiguate a word, so we need both directions

o The RNN uses an LSTM-like architecture, which are GRUs
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Attention-based Machine Translation

@ The decoder network is also an RNN
o Like the encoder/decoder translation model, it makes predictions one word
at a time, and its predictions are fed back in as inputs
o The difference is that it also receives a context vector ¢*) at each time
step, which is computed by attending to the inputs
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Attention-based Machine Translation

o The context vector is computed as a weighted average of all the encoder’s
annotation
) = Za'ijh(]) (1)
J

o the attention weights are computed as a softmax, where the inputs
depend on the annotation and the decoder’s state

exp(e;;)
T e—— 2
i 2 exp(ej) @
eij = a(s(i_l), h’) (3)

@ ¢;; is the alignment model which scores how well the inputs around
position j and the output at position i match.
o This score is based on the RNN hidden state s~ and the j-th annotation
hj of the input sentence
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Attention-based Machine Translation

@ Here’s a visualization of the attention maps at each time step
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Attention-based Caption Generation

@ Attention can also be used to understand images
@ We humans can’t process a whole visual scene at once
o The fovea of the eye gives us high-acuity vision in only a tiny region of our
field of view
o Instead, we must integrate information from a series of glimpses
o This idea inspired the following paper:

e Xu et al. Show, Attend, and Tell: Neural Image Caption Generation with
Visual Attention. ICML, 2015
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Attention-based Caption Generation

@ The caption generation task: take an image as an input, and produce a
sentence describing the image
@ Encoder: a classification conv net (VGGNet, similar to AlexNet)
o This computes a bunch of feature maps over the iamge
@ Decoder: an attention-based RNN, analogous to the decoder in the
translation model

e In each time step, the decoder computes an attention map over the entire
image, effectively deciding which regions to focus on

o It receives a context vector, which is the weighted average of the conv net
features
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Attention-based Caption Generation

@ This lets us understand where the network is looking as it generates a
sentence
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bird flying over body water
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A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a

mountain in the background
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A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear. in the water, trees in the background.
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Attention-based Caption Generation

o This can also help us understand the network’s mistakes

A large white bird standing in a forest.

A woman holding a clock in her hand. A man wearing a hat and
a hat on a skateboard.

< v
A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.

William & M SCI 416/516



Attention Is All You Need

@ We would like our model to have access to the entire history at each
hidden layer

@ We can use attention to aggregate the context information by attending to
one or a few important tokens from the past history

o Let’s take a look at the Transformer architecture

o Vaswani, Ashish, et al. ”Attention is all you need.” Advances in Neural
Information Processing Systems. 2017
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Attention Is All You Need

@ The transformer architecture:
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need

3. Multi-headed Attention
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need
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Attention Is All You Need

o In general, attention mappings can be described as a function of a query
and a set of key-value pairs

o Transformers use a “Scaled Dot-Product Attention” to obtain the context
vector, scaled by the square root of the key dimension dy

¢® = attention(Q, K, V) = softmax (QKT) v )
Vdk

@ Invalid connections to the future inputs are masked out
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Attention Is All You Need

@ The Scaled Dot-Product Attention attends to one or few entries in the
input key-value pairs
o Humans can attend to many things simultaneously
@ The idea: apply Scaled Dot-Product Attention multiple times on the
linearly transformed inputs.

MultiHead(Q, K, V) = concat(cy, ..., c,,)WO 5)

ci = attention(QWl.Q, K WL.K , VWiV) (6)

Q K \
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Transformer Machine Translation

o Self-attention layers learned “it” could refer to different entities in the
different contexts
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@ Visualization of the 5th and 6th Iself-attention layers in the encoder
o https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Transformer Machine Translation

@ BLEU scores of state-of-the-art models on the WMT 14
English-to-German translation task

Translation Model Training time BLEU (diff. from MOSES)
Transformer (large) 3 days on 8 GPU 284 (+7.8)
Transformer (small) 1 day on 1 GPU 249 (+4.3)
GNMT + Mixture of Experts | 1 day on 64 GPUs 260 (+54)
ConvS2S (FB) 18 days on 1 GPU 25.1 (+4.5)
GNMT 1 day on 96 GPUs 246 (+4.0)
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Transformer Language Pre-training

@ Increasing the training data set and the model size has a noticeable
improvement on the transformer language model. Cherry-picked
generated samples from Radford, et al., 2019:

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top
of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicom herd. These creatures could be
seen from the air without having to move too much to see them — they were so close they could touch
their horns.

@ For the full-text samples see Radford, Alec, et al. "Language Models are
Unsupervised Multitask Learners.” 2019




ChatGPT

@ ChatGPT fully utilizes the self-attention mechanism mentioned in
Attention Is All You Need!

@ During its training phase, ChatGPT is exposed to a massive amount of
text data from diverse sources

@ Unfortunately, OpenAl did not fully publicize ChatGPT’s weights

GPT-2 GPT-3

1.5 billion parameters 176 billion parameters ]

d 570 GB l’ﬂiﬂlng dataset COmpfiSlﬂg of
40 GB text training dataset books, articles, websites, and more

Ability to perform most language
tasks without additional tuning

Often fine-tuned to perform specific tasks

Smaller version of the model was released

Launched as an APl service
to the public open source
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ChatGPT

@ Here’s a passage of a poem written by ChatGPT, in the style of Charles
Baudelaire, on the topic of Artificial Intelligence

Thy beauty, though crafted by human mind,
Lacks the essence, the spirit we find.

For what is art without human touch,
Ahollow echo, a sound too much.

Thy logic reigns, devoid of desire,
A sterile flame that cannot inspire.
Mo passion burns within thy core,
Mo tumultuous emotions to explore.

@ Can it pass the Turing Test?

o Is the Turing Test still sufficient in this age of Machine Learning and
Artificial Intelligence, to determine if a model is truly intelligent?
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