Deep Transfer Learning

Linear Regression & Optimization

Ashley Gao
William & Mary

January 29, 2025

William & Mary CSCI 680 January 29, 2025

Supervised Learning Setup

4.0

35
3.0 .« "
25 *
=20 2 .
15 *
1.0
0.5
%05 1 2 3 4 5

@ In supervised learning:

o There is input x € X, typically a vector of features (or covariates)

o There is target r € 7 (also called response, outcome, output, class)

o Objective is to learn a function f : X — 7 such thatt ~ y = f(x) based
on the dataset D = {(x, D)} fori = 1,2, ..., N.

William & Mary CSCI 680 January 29, 2025 2/40

Linear Regression - Model

@ Model: In linear regression, we use a linear function of the features
x = (x1,...,xp) € RP to make prediction y of the target value ¢ € R:

y=F00) =) wixj+b (1)
J

e y is the prediction
o w is the weights
e b is the bias (or intercept)

e w and b together are the parameters

@ We hope that our prediction is close to the target: y = .

William & Mary CSCI 680 January 29, 2025 3/40

What is Linear? 1 feature vs D features

o If we have only 1 feature:
y=wx+b where w,x,b € R

@ yis linear in x

o If we have only D feature:
y =w'x +b where w,x € RP
and b e R

@ yis linear in x

X,

@ Relation between the prediction y and inputs x is linear in both cases.

William & Mary CSCI 680 January 29, 2025 4/40

Linear Regression

@ We have a dataset D = {(x?, D)} fori = 1,2, ..., N, where
o x(= (xio,xéi), ...,xg))T € RP are the inputs (i.e. age, height)
o 1) € R is the target or response (i.e. income)
o Predict 1Y) with a linear function of x(?)

AR y(i) =w'x+b

o Different (w, b) combinations
define different lines

@ We want the best line (w, b)

o How to quantify “best"?
@ Relation between the prediction y and inputs x is linear in both cases.

William & Mary CSCI 680 January 29, 2025 5/40

Linear Regression - Loss Function

@ A loss function L(y, t) defines how bad it is if, for some example x, the
algorithm predicts y, but the target is actually 7.

Squared error loss function:

1
L0 =50~ 1)? 2)

y — t is the residual, and we want to make this small in magnitude

% factor is just to make the calculations convenient

@ Cost function: loss function averaged over all training examples

N N
1 . . 1) ;
- @) _ (V2 = T,.(0) _ £(Dy2
J(w,b) N i;(y) N izgl(w xWW+b-1") 3)

Terminology varies. Some call “cost” empirical or average loss.

William & Mary CSCI 680 January 29, 2025 6/40

Vectorization

e Notion-wise, = >N (y() — (D)2 gets messy if we expand y9):
2N ~i=]

N D
1 . .
N Z(Z(ij;l) +b) -1 “
i=1 j=1
@ The code equivalent is to compute the prediction using a for loop:
Zo? t; in range(M):
y += w[il * x[4]

@ Excessive super/sub scripts are hard to work with, and Python loops are
slow, so we vectorize algorithms by expressing them in terms of vectors
and matrices.

w=Wi,...wp)ix=(x1,...xp);y=w'x+b 5)

o This is simpler and executes much faster:

y=np.dot(w,x) +b (6)

William & Mary CSCI 680 January 29, 2025 7140

Vectorization

@ Why vectorize?

o The equations, and the code, will be simpler and more readable. Gets rid
of dummy variables and indices!
e Vectorized code is much faster
@ Cut down on Python interpreter overhead
o Use highly optimized linear algebra libraries (hardware support)
e Matrix multiplication very fast on GPU (Graphics Processing Unit)
o Switching in and out of vectorized form is a skill you gain with practice

o Some algorithms are easier to write/understand using for-loops and
vectorize later for performance

William & Mary CSCI 680 anua 2025 8740

Vectorization

@ We can organize all the training examples into a design matrix X with
one row per training example, and all the targets into the target vector .

one feature across
all training examples

xOT\ /80| 3 o)
X=[x®T| = I 6 —-1] 5 3 l one training
8/

example (vector)
x®7 \2[5] 2

o Computing the predictions for the whole dataset:

wlx® £p y
Xw + bl =

: : =Y
wlx™) 4+ @)

William & Mary CSCI 680

Vectorization

o Computing the squared error cost across the whole dataset:

1
=Xw+b1;T = —|ly -1l 7
y +b1.J = 5lly — i)

@ Sometimes we use J = %ll y — t||> without a normalizer. This would
correspond to the sum of losses, and not the averaged loss. The
minimizer does not depend on N (but optimization might!).

@ We can also add a column of 1’s to design matrix, combine the bias and
the weights, and conveniently write
b

1 [x(l)]T
5 . w
X = [1 KT c R¥*D+) nd w = u; c RD+!
1 N

@ Then, our predictions reduce to y = Xw.

William & Mary CSCI 680 January 29, 2025 10/40

Vectorization

@ We have defined a cost function. This is what we’d like to minimize.

@ Two commonly applied mathematical approaches:
e Algebraic, e.g., using inequalities:
o To show that z* minimizes f(z), show that Vz, f(z) > f(z%)
o Calculus: minimum of a smooth function (if it exists) occurs at a critical
point, i.e. point where the derivative is zero.
o multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient).

@ Solutions may be direct or iterative
e Sometimes we can directly find provably optimal parameters (e.g. set the
gradient to zero and solve in closed form). We call this a direct solution.
e We may also use optimization techniques that iteratively get us closer to
the solution. We will get back to this soon.

William & Mary CSCI 680 January 29, 2025 11740

Direct Solution: Calculus

o Partial derivative: derivative of a multivariate function with respect to
one of its arguments.

d [+ hx) = fx1,x2)
— ,x0) =1 8
. f(x1,x2) = lim ’)
o To compute, take the single variable derivative, pretending the other
arguments are constant.
e Example: partial derivatives of the prediction y
ay 0
a—vvj—a—vvj ij'xj'+b =Xj (9)
J
dy 0
3 =7 ijijf+b =1 (10)
J

William & Mary CSCI 680 January 29, 2025 12740

Direct Solution: Calculus

@ For loss derivatives, apply the chain rule:

(L) _d(L)d(y) 4 (1 2 ~
B - dy dw, - dy SO =07 X =y —0x (11)
6(L) _ d(L)9(y) _
ob dy 0b
@ For cost derivatives, use linearity and average over data points.
@ Minimum must occur at a point where partial derivatives are zero.

-t (12)

N

a(J) _ 1) _ (D)), ()
S D _ 0y, Z g 13
aw, N;:l(y rY)x; (13)
) _1<0 o
NACO D _) = 14
ob Nzy 7 =0 (14

i=1

e 0(J) .
o if 7=~ # 0, you could reduce the cost by changing w;
William & Mary CSCI 680 January 29, 2025 13/40

Direct Solution: Calculus

o The derivation on the previous slide gives a system of linear equations,
which we can solve efficiently.

@ As is often the case for models and code, however, the solution is easier
to characterize if we vectorize our calculus.

@ We call the vector of partial derivatives the gradient
@ Thus, the gradient of f : RP? — R, denoted V f(w), is:

9 d ’
a_wlf(w)’"" Mf(w) (15)

o The gradient points in the direction of the greatest rate of increase.

@ Analogue of the second derivative (the Hessian matrix):
V2 f(w) € RP*P is a matrix with [sz(w)]l-,j = #{;ij(w)

William & Mary CSCI 680 January 29, 2025 14740

Feature Mapping (Basic Expansion)

@ The relation between the input and output may not be linear.

@ We can still use linear regression by mapping the input features to
another space using feature mapping (or basis expansion)

o ¥(x) : RP — R4 and treat the mapped features in R¢ as the input of a
linear regression procedure.

o Let us see how it works when x € R and we use a polynomial feature
mapping.

William & Mary CSCI 680 January 29, 2025 15740

Feature Mapping (Basic Expansion)

o If the relationship doesn’t look linear, we can fit a polynomial.

o Fit the data using a degree-M polynomial function of the form:

M
y=w0+w1x+wzx2+...+waM :Zwixi (16)

i=0

o Here the feature mapping is ¢ (x) = [1,x,x%, ...,x™]7T

@ We can still use linear regression to find w since y = y(x) T is linear in
wo, W1, ..., because the coefficients are still linear!

William & Mary CSCI 680 January 29, 2025 16/40

Polynomial Feature Mapping with M =0

1 o M=0
t
o o
of 7 N\
O
1
0 .1

William & Mary CSCI 680 January 29, 2025 17/40

Polynomial Feature Mapping with M = 1

William & Mary CSCI 680 January 29, 2025 18740

Polynomial Feature Mapping with M = 3

Yy = wqy+ wir + wg;r,2 + wg;z?'g

William & Mary CSCI 680 January 29, 2025 19740

Polynomial Feature Mapping with M =9

2 3 9
Y = Wy + WT + woxr” + w3xr” + ...+ WoT

William & Mary CSCI 680 January 29, 2025 20/40

Model Complexity and Generalization

@ Underfitting (M=0): model is too simple — does not fit the data.
o Overfitting (M=9): model is too complex — fits perfectly.

T
—©— Training ‘
—o— Test P

William & Mary CSCI 680 January 29, 2025 21740

Model Complexity and Generalization

M=0 M=1 M=3 M=9
wy 0.19 0.82 0.31 0.35 L
w} 127 7.99 232.37

wh -25.43 -5321.83 ¢
wh 17.37 48568.31
w} -231639.30

wh 640042.26

we -1061800.52
wh 104240018

w} -557682.99

wh 125201.43

@ As M increases, the magnitude of coefficients gets larger.
o For M =9, the coeflicients have become finely tuned to the data.

@ Between data points, the function exhibits large oscillations.

William & Mary CSCI 680 January 29, 2025 22/40

Regularization

@ The degree M of the polynomial controls the model’s complexity.

@ The value of M is a hyperparameter for polynomial expansion, just like £
in KNN. We can tune it using a validation set.

@ Restricting the number of parameters is a crude approach to controlling
the model complexity.
@ Another approach: keep the model large, but regularize it

e Regularizer: a function that quantifies how much we prefer one hypothesis
vs. another

William & Mary CSCI 680 January 29, 2025 23/40

L? or I, Regularization

@ We can encourage the weights to be small by choosing as our regularizer
the L? penalty.

1 1
Rw) = 31wll; = 5 > w3 (17)
J

o Note: To be precise, the L? norm is Euclidean distance, so we’re
regularizing the squared L? norm.

@ The regularized cost function makes a tradeoft between fit to the data and
the norm of the weights.

Tres W) = T(9) + AR(9) = T () +§;w§ 18)

o If you fit training data poorly, 7 is large. If your optimal weights have
high values, R is large. Large A penalizes weight values more.
o Like M, A is a hyperparameter we can tune with a validation set.

William & Mary CSCI 680 January 29, 2025 24740

Conclusion So Far

@ Linear regression exemplifies recurring themes of this course:

e choose a model and a loss function
o formulate an optimization problem
o solve the minimization problem using one of two strategies
@ direct solution (set derivatives to zero)
e gradient descent (next topic)
e vectorize the algorithm, i.e. represent in terms of linear algebra
o make a linear model more powerful using features
o improve the generalization by adding a regularizer

William & Mary CSCI 680

Slight Digression

William & Mary CSCI 680 January 29, 2025 26/40

Gradient Descent

@ Now let’s see a second way to minimize the cost function which is more
broadly applicable: gradient descent.

@ Many times, we do not have a direct solution: Taking derivatives of
w.r.t w and setting them to O doesn’t have an explicit solution.

@ Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

@ We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of the steepest descent.

gt
J(w)

~ =

w2

William & Mary CSCI 680 January 29, 2025 27740

Gradient Descent

° Observe
° 1f > 0, then increasing w ; increases J

° 1f < 0, then increasing w; decreases J

o The followmg update always decreases the cost function for small
enough «a unless aj 0:
N
Wy mag (19)
@ « > (s alearning rate (or step size). The larger it is, the faster w
changes.

o We’ll see later how to tune the learning rate, but values are typically small,
e.g. 0.01 or 0.0001.

William & Mary CSCI 680 January 29, 2025 28/40

Gradient Descent

o This gets its name from the gradient:

0g N N
\Y =— =, ..., — 20
wI ow (aw1 owp (20
o This is the direction of the fastest change in 7.
o Update rule in vector form:
We—w-— aa—j 2D
ow
@ And for linear regression we have:
.
_ = @) _ (D), @ 22
W o ;(y)x (22)

@ So gradient descent updates w in the direction of fastest decrease.

@ Observe that once it converges, we get a critical point. i.e. %Z =0

William & Mary CSCI 680 January 29, 2025 29740

Gradient Descent

@ The squared error loss of linear regression is a convex function.

o Even for linear regression, where there is a direct solution, we sometimes
need to use GD.

@ Why gradient descent, if we can find the optimum directly?

@ GD can be applied to a much broader set of models

o GD can be easier to implement than direct solutions

o For regression in high-dimensional space, GD is more efficient than direct

solution
o Each GD update costs O(ND)

@ Or less with stochastic GD (SGD, in a few slides)
o Huge difference if D > 1

William & Mary CSCI 680 January 29, 2025 30740

Gradient Descent Under the L? Regularization

o Gradient descent update to minimize J:

We—w-— aa—j (23)
ow

@ The gradient descent update to minimize the L? regularized cost J + AR
results in weight decay:

We—w-— a/i(j+/17€) (24)
ow
0 o 6_j OR
w—cx%(j+/l72)—w ((9 aw) (25)
Ni OR 0y
w—a(W+A%)—w—a(%+/iw) (26)
we— (1—ad)w - cxg 27)

ow

William & Mary CSCI 680 January 29, 2025 31740

Learning Rate (Step Size)

@ In gradient descent, the learning rate « is a hyperparameter we need to
tune. Here are some things that can go wrong:

//

« too small: « too large:

« much too large:
slow progress oscillations

instability

@ Good values are typically between 0.001 and 0.1. You should do a grid
search if you want good performance.

William & Mary CSCI 680 January 29, 2025 32740

Training Curve

o To diagnose optimization problems, it’s useful to look at training curves:
plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: in general, it’s very hard to tell from the training curves
whether an optimizer has converged. They can reveal major problems,
but they can’t guarantee convergence.

William & Mary CSCI 680 January 29, 2025

Stochastic Gradient Descent

@ So far, the cost function J has been the average loss over the training
examples:

N N
TO =52 L0=5 3 LoGD0.00 e
i=1 i=1

@ 0 denotes the parameters; e.g., in linear regression, 6 = (w, b)
o By linearity,

9g _ 1 Z ‘M(l) (29)

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

@ Batch training is impractical if you have a large dataset N > 1 (e.g.
millions of training examples)!

William & Mary CSCI 680 January 29, 2025 34740

Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

o Choose i unifonnly at random;
o 6 —0- a%am
@ Cost of each SGD update is independent of N'!
@ SGD can make significant progress before even seeing all the data!

o Mathematical justification: if you sample a training example uniformly at
random, the stochastic gradient is an unbiased estimate of the batch
gradient:

1§ oLh o7
NZLi 96— 90

(i)
E [6£] = (30)

060

William & Mary CSCI 680 January 29, 2025 35740

Stochastic Gradient Descent

@ Problems with using a single training example to estimate gradient:
e Variance in the estimate may be high
e We can’t exploit efficient vectorized operations
@ Compromise approach:
o Compute the gradients on a randomly chosen medium-sized set of training
M c{1,..., N} examples, called a mini-batch.
@ Stochastic gradients computed on larger mini-batches have smaller
variances.
@ The mini-batch size | M] is a hyperparameter that needs to be set.

e Too large: requires more compute; e.g., it takes more memory to store the
activations, and longer to compute each gradient update

o Too small: can’t exploit vectorization, has high variance

e reasonable value might be | M| = 100.

William & Mary CSCI 680 January 29, 2025 36/40

Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill (locally speaking).

@ SGD takes steps in a noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent

William & Mary CSCI 680 January 29, 2025 37740

SDG Learning Rate

o In stochastic training, the learning rate also influences the fluctuations
due to the stochasticity of the gradients.
@ Stochasticity, in the context of machine learning, refers to the introduction

of randomness or probabilistic elements into the learning process.
small learning rate large learning rate

o Typical strategy:
o Use a large learning rate early in training so you can get close to the
optimum
o Gradually decay the learning rate to reduce the fluctuations

William & Mary CSCI 680 January 29, 2025 38740

When Are Critical Points Optimal?

critical
point

critical
point

local
maximum

local
minimum

critical
point

global
minimum

@ Gradient descent finds a critical point, but it may be a local optima.

e Convexity is a property that guarantees that all critical points are global
minima.

William & Mary CSCI 680 January 29, 2025 39740

Conclusion

@ In this lecture, we looked at linear regression, which exemplifies a
modular approach that will be used throughout this course:

e choose a model describing the relationships between variables of interest
(linear)

o define a loss function quantifying how bad the fit to the data is (squared
error)

e choose a regularizer to control the model complexity/overfitting (L2, LP
regularization)

o fit/optimize the model (gradient descent, stochastic gradient descent,
convexity)

@ By mixing and matching these modular components, we can obtain new
ML methods.

William & Mary CSCI 680 January 29, 2025 40740

