
Deep Transfer Learning
Logistic Regression, Multi-class Classification

Ashley Gao

William & Mary

Feburary 10, 2024

William & Mary CSCI 680 Feburary 10, 2024 1 / 44

Overview

Classification: predicting a discrete-valued target
Binary classification: predicting a binary-valued target
Multiclass classification: predicting a discrete (> 2)-valued target

Examples of binary classification:
predict whether a patient has a disease, given the presence or absence of
various symptoms
classify e-mails as spam or non-spam
predict whether a financial transaction is fraudulent

William & Mary CSCI 680 Feburary 10, 2024 2 / 44

Overview

Binary linear classification
classification: given a D-dimensional input x ∈ R� predict a
discrete-valued target
binary: predict a binary target C ∈ {0, 1}

Training examples with C = 1 are called positive examples, and training
examples with C = 0 are called negative examples.
C ∈ {0, 1} or C ∈ {+1,−1} is for computational convenience.

linear: model prediction H is a linear function of x, followed by a threshold
A

I = w>x + 1 (1)

H =

{
1 I ≥ A
0 I < A

(2)

William & Mary CSCI 680 Feburary 10, 2024 3 / 44

Some Simplification

Eliminating the threshold
We can assume without loss of generality (WLOG) that the threshold
A = 0:

w>x + 1 ≥ A ⇐⇒ w>x + 1 − A ≥ 0 (3)

Eliminating the bias
Add a dummy feature x0 which always takes the value 1. The weight
F0 = 1 is equivalent to a bias (same as linear regression)

Simplified model
Receive input x ∈ R�+1 with G0 = 1:

I = w>x (4)

H =

{
1 I ≥ A
0 I < A

(5)

William & Mary CSCI 680 Feburary 10, 2024 4 / 44

Some Examples

Let’s consider some simple examples to examine the properties of our
model
Let’s focus on minimizing the training set error, and forget about whether
our model will generalize to a test set.

William & Mary CSCI 680 Feburary 10, 2024 5 / 44

Some Examples

Suppose this is our training set, with the dummy feature G0 included
Which conditions on w0, w1 guarantee perfect classification?

When G1 = 0, need: I = F0G0 + F1G1 ≥ 0⇐⇒ F0 ≥ 0
When G1 = 1, need: I = F0G0 + F1G1 < 0⇐⇒ F0 + F1 < 0

Possible solution: F0 = 1, F1 = −2
Is this the only solution?

William & Mary CSCI 680 Feburary 10, 2024 6 / 44

Some Examples

William & Mary CSCI 680 Feburary 10, 2024 7 / 44

The Geometric Picture

Training examples are points
Weights (hypotheses) w can be represented by half-spaces.
�+ = {x : w>x ≥ 0}, �− = {x : w>x < 0}

The boundaries of these half-spaces pass through the origin (why?)
Decision boundary: {x : w>x = 0}

In 2-D, it’s a line, but in high dimensions it is a hyperplane

If the training examples can be perfectly separated by a linear decision
rule, we say data is linearly separable.

William & Mary CSCI 680 Feburary 10, 2024 8 / 44

The Geometric Picture

Weight space

Weights (hypotheses) w are points
Each training example x specifies a half-space w must lie in to be
correctly classified: w>x ≥ 0 if C = 1.
For NOT example:

G0 = 1, G1 = 0, C = 1 =⇒ (F0, F1) ∈ w : F0 ≥ 0
G0 = 1, G1 = 1, C = 0 =⇒ (F0, F1) ∈ w : F0 + F1 < 0

The region satisfying all the constraints is the feasible region; if this
region is nonempty, the problem is feasible, otherwise it is infeasible.

William & Mary CSCI 680 Feburary 10, 2024 9 / 44

Summary — Binary Linear Classifiers

Summary: Targets C ∈ {0, 1}, inputs x ∈ R�+1 with G0 = 1, and model is
defined by weights w and

I = w>x (6)

H =

{
1 I ≥ A
0 I < A

(7)

How can we find good values for w?
If the training set is linearly separable, we could solve for w using linear
programming

We could also apply an iterative procedure known as the perceptron
algorithm (but this is primarily of historical interest).

If it’s not linearly separable, the problem is harder
Data is almost never linearly separable in real life.

William & Mary CSCI 680 Feburary 10, 2024 10 / 44

Towards Logistic Regression

William & Mary CSCI 680 Feburary 10, 2024 11 / 44

Loss Function

Instead: define loss function then try to minimize the resulting cost
function

Recall: cost is loss averaged (or summed) over the training set
Seemingly obvious loss function: 0-1 loss

L0,1(H, C) =
{

0 H = C

1 H ≠ C
(8)

L0,1(H, C) = I(H ≠ C) (9)

William & Mary CSCI 680 Feburary 10, 2024 12 / 44

Attempt 1: 0-1 loss

Usually, the cost J is the averaged loss over training examples; for 0-1
loss, this is the misclassification rate:

J =
1
#

#∑
8=1
I(H (8) ≠ C (8)) (10)

Problem: how to optimize? In general, a hard problem (can be NP-hard)
This is due to the step function (0-1 loss) not being nice
(continuous/smooth/convex etc)

William & Mary CSCI 680 Feburary 10, 2024 13 / 44

Attempt 1: 0-1 loss

Minimum of a function will be at its critical points.
Let’s try to find the critical point of 0-1 loss
Chain rule:

mL0,1

mF 9
=
mL0,1

mI

mI

mF 9
(11)

But mL0,1
mI

is zero everywhere it’s defined!

mL0,1
mF9

= 0 means that changing the weights by a very small amount
probably has no effect on the loss =⇒ Almost any point has 0 gradient!

William & Mary CSCI 680 Feburary 10, 2024 14 / 44

Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as relaxation with a smooth
surrogate loss function.
One problem with L0,1: defined in terms of final prediction, which
inherently involves a discontinuity
Instead, define loss in terms of w>x directly

Redo notation for convenience: I = w>x

William & Mary CSCI 680 Feburary 10, 2024 15 / 44

Attempt 2: Linear Regression

We already know how to fit a linear regression model. Can we use this
instead?

I = w>x (12)

L(� =
1
2
(I − C)2 (13)

Doesn’t matter that the targets are actually binary. Treat them as
continuous values.
For this loss function, it makes sense to make final predictions by
thresholding I at 0.5

William & Mary CSCI 680 Feburary 10, 2024 16 / 44

Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with high
confidence!
If C = 1, it’s more unhappy about I = 10 than I = 0.

William & Mary CSCI 680 Feburary 10, 2024 17 / 44

Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s squash
H into this interval.
The logistic function is a kind of sigmoid, or S-shaped function:

f(I) = 1
1 + 4−I (14)

A linear model with a logistic nonlinearity is known as log-linear:

I = w>x (15)

H = f(I) (16)

L(� =
1
2
(H − C)2 (17)

Used in this way, f is called an activation function.

William & Mary CSCI 680 Feburary 10, 2024 18 / 44

Attempt 3: Logistic Activation Function

William & Mary CSCI 680 Feburary 10, 2024 19 / 44

Attempt 3: Logistic Activation Function

The problem: (plot of L(� as a function of I, assuming C = 1)

For I � 0, we have f(I) ≈ 0.
mL
mI
≈ 0 (check!) =⇒ mL

mF9
≈ 0 =⇒ derivative w.r.t. F 9 is small =⇒ F 9 is

like a critical point
If the prediction is really wrong, you should be far from a critical point
(which is your candidate solution).

William & Mary CSCI 680 Feburary 10, 2024 20 / 44

Logistic Regression

Because H ∈ [0, 1], we can interpret it as the estimated probability that
C = 1. If C = 0, then we want to heavily penalize H ≈ 1.
The people who were 99% confident a certain presidential candidate
would win were much more wrong than the ones who were only 90%
confident, given that the person didn’t win.
Cross-entropy loss (aka log loss) captures this intuition:

William & Mary CSCI 680 Feburary 10, 2024 21 / 44

Logistic Regression

Logistic regression:

William & Mary CSCI 680 Feburary 10, 2024 22 / 44

Logistic Regression - Numerical Instabilities

If we implement logistic regression naively, we can end up with
numerical instabilities.
Consider: C = 1 but you’re really confident that I � 0
If H is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

H = f(I) ⇒ H ≈ 0 (18)

L�� = −ClogH − (1 − C)log(1 − H) (19)

William & Mary CSCI 680 Feburary 10, 2024 23 / 44

Logistic Regression - Numerical Stable Version

Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function

L!�� = L�� (f(I), C) = −Clog(
1

1 + 4−I) − (1− C)log(1−
1

1 + 4−I) (20)

L!�� = Clog(1 + 4−I) + (1 − C)log(1 + 4−I) (21)

L!�� = I − IC + log(1 + 4−I) (22)

Equivalently,

L!�� = Clog(1 + 4−I) + (1 − C)log(1 + 4I) (23)

William & Mary CSCI 680 Feburary 10, 2024 24 / 44

Gradient Descent for Logistic Regression

How do we minimize the cost J for logistic regression? No direct
solution.

Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have an
explicit solution.

However, the logistic loss is a convex function in w, so let’s consider the
gradient descent method/

Recall: we initialize the weights to something reasonable and repeatedly
adjust them in the direction of the steepest descent.
A standard initialization is F = 0.

William & Mary CSCI 680 Feburary 10, 2024 25 / 44

Gradient of Logistic Loss

Back to logistic regression:

L�� (H, C) = −ClogH − (1 − C)log(1 − H) (24)

H =
1

1 + 4 (−I)
, I = w>x (25)

mL��
mF 9

=
mL��
mH

mH

mI

mI

mF 9
(26)

mL��
mF 9

=

(
− C
H
+ 1 − C

1 − H

)
· H(1 − H) · G 9 = (H − C)G 9 (27)

Gradient descent update to find the weights of logistic regression:

F 9 ← F 9 − U
mJ
mF 9

= F 9 −
U

#

#∑
8=1
(H (8) − C (8))G (8) (28)

William & Mary CSCI 680 Feburary 10, 2024 26 / 44

Multiclass Classification and Softmax Regression

William & Mary CSCI 680 Feburary 10, 2024 27 / 44

Overview

Classification: predicting a discrete-valued target
Binary classification: predicting a binary-valued target
Multiclass classification: predicting a discretev(> 2)-valued target

Examples of multi-class classification
predict the value of a handwritten digit
classify e-mails as spam, travel, work, personal

William & Mary CSCI 680 Feburary 10, 2024 28 / 44

Multiclass Classification

Classification tasks with more than two categories:

William & Mary CSCI 680 Feburary 10, 2024 29 / 44

Multiclass Classification

Targets form a discrete set {1, ..., }.
It’s often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

Entry : is 1, the other entries are all 0’s.
: is not to be confused with .

t = (0, ..., 0, 1, 0, ..., 0) ∈ R (29)

William & Mary CSCI 680 Feburary 10, 2024 30 / 44

Multiclass Linear Classification

We can start with a linear function of the inputs.
Now there are � input dimensions and output dimensions, so we need
 × � weights, which we arrange as a weight matrix, .
Also, we have a -dimensional vector 1 of biases.
A linear function of the inputs:

I: =

�∑
9=1
F: 9G 9 + 1: for : = 1, 2, ..., (30)

We can eliminate the bias 1 by taking, ∈ R ×(�+1) adding a dummy
variable x0 = 1. So, vectorized:

z =]x + b, or with dummy G0 = 1, z =]x (31)

William & Mary CSCI 680 Feburary 10, 2024 31 / 44

Multiclass Linear Classification

How can we turn this linear prediction into a one-hot prediction?
We can interpret the magnitude of I: as a measure of how much the
model prefers : as its prediction.
If we do this, we should set

H8 =


1 8 = argmax

:

I:

0 otherwise
(32)

Exercise: how does the case of = 2 relate to the prediction rule in
binary linear classifiers?

William & Mary CSCI 680 Feburary 10, 2024 32 / 44

Softmax Regression

We need to soften our predictions for the sake of optimization.
We want soft predictions that are like probabilities, i.e., 0 ≤ H: ≤ 1 and∑
: H: = 1.

A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

H: = softmax(I1, ..., I): =
4I:∑
:′ 4

I:′
(33)

Outputs can be interpreted as probabilities (positive and sum to 1)
If I: is larger than the others, then softmax(I): ≈ 1 and it behaves like
argmax.

The inputs I: are called the logits.

William & Mary CSCI 680 Feburary 10, 2024 33 / 44

Softmax Regression

If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function, where the log is applied elementwise.

L�� (y, t) = −
 ∑
C: logH: = −t>(logH) (34)

Just like with logistic regression, we typically combine the softmax and
cross-entropy into a softmax-cross-entropy function

William & Mary CSCI 680 Feburary 10, 2024 34 / 44

Linear Classifiers vs. KNN

William & Mary CSCI 680 Feburary 10, 2024 35 / 44

Linear Classifiers vs. KNN

Linear classifiers and KNN have very different decision boundaries:

William & Mary CSCI 680 Feburary 10, 2024 36 / 44

Linear Classifiers vs. KNN

Advantages of linear classifiers over KNN?
Robustness to irrelevant features

Linear classifiers are generally robust to irrelevant or redundant features.
Scalability

Linear classifiers can handle high-dimensional feature spaces efficiently and
are more scalable as the number of features increases.

The curse of dimensionality!
Easy updates of the model

Advantages of KNN over linear classifiers?
No assumption of data distribution

It is a non-parametric method, which means it does not assume any specific
functional form for the decision boundaries.

Non-linearity
KNN can capture complex, non-linear decision boundaries

Robustness to imbalanced data
It relies on the local neighborhood and not global statistics.

William & Mary CSCI 680 Feburary 10, 2024 37 / 44

Limitations of Linear Classification

William & Mary CSCI 680 Feburary 10, 2024 38 / 44

A Few Basic Concepts

A hypothesis is a function 5 : X → T that we might use to make
predictions (recall X is the input space and T is the target space).
The hypothesis spaceH for a particular machine learning model or
algorithm is a set of hypotheses that it can represent.

E.g., in linear regression,H is the set of functions that are linear in the
data features
The job of a machine learning algorithm is to find a good hypothesis
5 ∈ H

The members ofH , together with an algorithm’s preference for some
hypotheses ofH over others, determine an algorithm’s inductive bias.

Inductive biases can be understood as general natural patterns or domain
knowledge that helps our algorithms to generalize;

E.g., linearity, continuity, simplicity (!2 regularization) ...
The so-called No Free Lunch (NFL) theorems assert that if
datasets/problems were not naturally biased, no ML algorithm would be
better than another

William & Mary CSCI 680 Feburary 10, 2024 39 / 44

A Few Basic Concepts

If an algorithm’s hypothesis spaceH can be defined using a finite set of
parameters, denoted) , we say the algorithm is parametric.

In linear regression,) = (w, 1)
Other examples: logistic regression, neural networks, k-means and
Gaussian mixture models

If the members ofH are defined in terms of the data, we say that the
algorithm is non-parametric.

In :-nearest neighbors, the learned hypothesis is defined in terms of the
training data
Other examples: Gaussian processes, decision trees, support vector
machines, kernel density estimation
These models can sometimes be understood as having an infinite number
of parameters

William & Mary CSCI 680 Feburary 10, 2024 40 / 44

Limits of Linear Classification

Some datasets are not linearly separable, e.g. XOR,

Visually obvious, but how to show this?

William & Mary CSCI 680 Feburary 10, 2024 41 / 44

Showing that XOR is not linearly separable (proof by
contradiction)

If two points lie in a half-space, the line segment connecting them also
lies in the same half-space.
Suppose there were some feasible weights (hypothesis). If the positive
examples are in the positive half-space, then the green line segment must
be as well.
Similarly, the red line segment must line within the negative half-space

But the intersection can’t lie in both half-spaces. Contradiction!
William & Mary CSCI 680 Feburary 10, 2024 42 / 44

Limits of Linear Classification

Sometimes we can overcome this limitation using feature maps, just like
for linear regression. E.g., for XOR:

This is linearly separable.

William & Mary CSCI 680 Feburary 10, 2024 43 / 44

In the Future

Feature maps are hard to design well, so next time we’ll see how to learn
nonlinear feature maps directly using neural networks...
The basics of NN will be covered in this class.

William & Mary CSCI 680 Feburary 10, 2024 44 / 44

