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Overview

o Classification: predicting a discrete-valued target
o Binary classification: predicting a binary-valued target
e Multiclass classification: predicting a discrete (> 2)-valued target
e Examples of binary classification:
e predict whether a patient has a disease, given the presence or absence of
various symptoms
o classify e-mails as spam or non-spam
o predict whether a financial transaction is fraudulent
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Overview

@ Binary linear classification

o classification: given a D-dimensional input x € R” predict a
discrete-valued target
e binary: predict a binary target ¢ € {0, 1}
o Training examples with r = 1 are called positive examples, and training
examples with ¢ = 0 are called negative examples.
o t€{0,1}ort € {+1, -1} is for computational convenience.

o linear: model prediction y is a linear function of x, followed by a threshold

-
z=w'x+b (1)

1 z>r
y={ ()

0 z<r
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Some Simplification

o Eliminating the threshold
e We can assume without loss of generality (WLOG) that the threshold
r=0:
wx+b>re=wx+b-r>0 3)

o Eliminating the bias

o Add a dummy feature xO which always takes the value 1. The weight
wo = b is equivalent to a bias (same as linear regression)

o Simplified model
o Receive input x € RP*! with xo = 1:

z=w'x 4)
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Some Examples

@ Let’s consider some simple examples to examine the properties of our
model

@ Let’s focus on minimizing the training set error, and forget about whether
our model will generalize to a test set.
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Some Examples

@ Suppose this is our training set, with the dummy feature x( included
@ Which conditions on w0, w1 guarantee perfect classification?

o Whenx; =0,need: z=woxg+wix; >0 wy >0

e Whenx; =1,need: z=woxop+wix; <0 &= wog+w; <0

@ Possible solution: wg =1, w; = -2

o Is this the only solution?
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Some Examples

AND

rg X1 X2 |t 2z = woxg + w11 + waks
L0 070 need: wg < 0
T 0 110 4 <0
1 1 0lo0 need: wq + wsq
11 111 need: wp +wy <0

need: wg + wy + ws >0

Example solution: wy = —1.5, w; =1, wg =1
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The Geometric Picture

o Training examples are points
@ Weights (hypotheses) w can be represented by half-spaces.
H.={x:wx >0}, H_-={x:w'x <0}
o The boundaries of these half-spaces pass through the origin (why?)
e Decision boundary: {x : w'x = 0}
o In 2-D, it’s a line, but in high dimensions it is a hyperplane
o If the training examples can be perfectly separated by a linear decision
rule, we say data is linearly separable.
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The Geometric Picture

@ Weight space

wo = 0

wo +wy <0

@ Weights (hypotheses) w are points
@ Each training example x specifies a half-space w must lie in to be
correctly classified: w'x > 0ifr = 1.
@ For NOT example:
e xg=1,x1=0,t=1= (wo,w;) Ew:wy >0
exo=lLx=1Lt=0= (wo,w;) eEw:wo+w; <0

@ The region satisfying all the constraints is the feasible region; if this
region is nonempty, the problem is feasible, otherwise it is infeasible.
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Summary — Binary Linear Classifiers

e Summary: Targets ¢ € {0, 1}, inputs x € RP*! with xo = 1, and model is
defined by weights w and

z=w'x (6)
1 z>r

= 7

Y {0 z<r 7

@ How can we find good values for w?
o If the training set is linearly separable, we could solve for w using linear
programming
o We could also apply an iterative procedure known as the perceptron
algorithm (but this is primarily of historical interest).
o If it’s not linearly separable, the problem is harder
e Data is almost never linearly separable in real life.
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Towards Logistic Regression
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Loss Function

o Instead: define loss function then try to minimize the resulting cost
function

o Recall: cost is loss averaged (or summed) over the training set

@ Seemingly obvious loss function: 0-1 loss

Loa(y.1) = {0 y=l ®)
1 y#t
Lo1(y, 1) =I(y #1) )
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Attempt 1: 0-1 loss

o Usually, the cost 7 is the averaged loss over training examples; for 0-1
loss, this is the misclassification rate:

1 X . .
_ (1) (@)
g = I l._El Iy #t'V) (10)

@ Problem: how to optimize? In general, a hard problem (can be NP-hard)

@ This is due to the step function (0-1 loss) not being nice
(continuous/smooth/convex etc)
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Attempt 1: 0-1 loss

@ Minimum of a function will be at its critical points.
@ Let’s try to find the critical point of 0-1 loss

@ Chain rule:
0L, 0Lo, Oz

BWj B 6z éwj

(1)

d . .
o But gg" is zero everywhere it’s defined!
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66631’_ = 0 means that changing the weights by a very small amount

probably has no effect on the loss = Almost any point has 0 gradient!
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Attempt 2: Linear Regression

@ Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as relaxation with a smooth
surrogate loss function.

@ One problem with £ i: defined in terms of final prediction, which
inherently involves a discontinuity

o Instead, define loss in terms of w "x directly

e Redo notation for convenience: z = w'x
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Attempt 2: Linear Regression

@ We already know how to fit a linear regression model. Can we use this
instead?
7=w'x (12)

1
Lsp =5(-1)’ (13)
@ Doesn’t matter that the targets are actually binary. Treat them as
continuous values.

@ For this loss function, it makes sense to make final predictions by
thresholding z at 0.5
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Attempt 2: Linear Regression

o The problem:

large
residual

@ The loss function hates when you make correct predictions with high
confidence!

o Ifr =1, it’s more unhappy about z = 10 than z = 0.
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Attempt 3: Logistic Activation Function

@ There’s obviously no reason to predict values outside [0, 1]. Let’s squash
y into this interval.

@ The logistic function is a kind of sigmoid, or S-shaped function:

1
= 14
o(2) == (14)
@ A linear model with a logistic nonlinearity is known as log-linear:

z=w'x (15)

y=0(2) (16)

1
Lsg =50 -1 a7

@ Used in this way, o is called an activation function.
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Attempt 3: Logistic Activation Function
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Attempt 3: Logistic Activation Function

@ The problem: (plot of Lgsg as a function of z, assuming ¢t = 1)
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@ For z < 0, we have o (z) ~ 0.
° % ~ 0 (check!) = % ~ () = derivative w.r.t. w; is small = w; is
J
like a critical point

o If the prediction is really wrong, you should be far from a critical point
(which is your candidate solution).
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Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability that
t = 1. If t = 0, then we want to heavily penalize y ~ 1.

@ The people who were 99% confident a certain presidential candidate
would win were much more wrong than the ones who were only 90%
confident, given that the person didn’t win.

o Cross-entropy loss (aka log loss) captures this intuition:

5
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_ | —logy ift=1
Lonly, 1) = { —log(l—y) ift=0
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Logistic Regression

o Logistic regression:

T

=W X

y=o(2)
B 1
Cl4e2

Lep = —tlogy — (1 =) log(1 —y)

Plot is for target t = 1.

loss
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Logistic Regression - Numerical Instabilities

o If we implement logistic regression naively, we can end up with
numerical instabilities.

@ Consider: ¢ = 1 but you're really confident that z << 0

o If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y=0(z) =>y=0 (18)

Lcg = —tlogy — (1 —t)log(1 - y) (19)
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Logistic Regression - Numerical Stable Version

o Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function

1 1
Lice = Lep(0(2).1) = —tlog(———) — (1 -Dlog(1 - ———) (20)
Lice =tlog(1+e7?)+ (1 —-1)log(1+e%) 2D
Lice=z-zt+log(l+e7%) (22)
o Equivalently,
Lice =tlog(1+e™%) + (1 —1)log(1 + e%) (23)
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Gradient Descent for Logistic Regression

@ How do we minimize the cost J for logistic regression? No direct
solution.

o Taking derivatives of J w.r.t. w and setting them to 0 doesn’t have an
explicit solution.

@ However, the logistic loss is a convex function in w, so let’s consider the
gradient descent method/

o Recall: we initialize the weights to something reasonable and repeatedly
adjust them in the direction of the steepest descent.
e A standard initialization is w = 0.
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Gradient of Logistic Loss

@ Back to logistic regression:

Lcr(y,1) = —tlogy = (1 = 1)log(1 - y)

1 T
Y Trea T
0Lce _ 0Lce dy 0z
ow; - dy 0z 0w}
0LcE r 11—t
=|—— . 1- X = —x;
aw, (y+1_y) y(I=y)-xj=(y—1)x;

@ Gradient descent update to find the weights of logistic regression:

N

@ . R ,

Wjpewjm e s =W E (D = D)x
J i=1
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Multiclass Classification and Softmax Regression
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Overview

o Classification: predicting a discrete-valued target

e Binary classification: predicting a binary-valued target
e Multiclass classification: predicting a discretev(> 2)-valued target

o Examples of multi-class classification

o predict the value of a handwritten digit
o classify e-mails as spam, travel, work, personal
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Multiclass Classification

@ Classification tasks with more than two categories:

ool N (A2
Bwzon 1233
Rle794973659
Y LYE KR

P83 73§ 409qg7
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Multiclass Classification

o Targets form a discrete set {1, ..., K}.
o It’s often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:
e Entry k is 1, the other entries are all 0’s.
o k is not to be confused with K.

t=(0,..,0,1,0,...,0) € R¥ (29)
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Multiclass Linear Classification

@ We can start with a linear function of the inputs.

@ Now there are D input dimensions and K output dimensions, so we need
K x D weights, which we arrange as a weight matrix W.

@ Also, we have a K-dimensional vector b of biases.

@ A linear function of the inputs:

D
2= ) Wi+ by fork =1,2,., K (30)
j=1

@ We can eliminate the bias b by taking W € RX*(P+) adding a dummy
variable x0 = 1. So, vectorized:

z = Wx + b, or with dummy xg = 1,z = Wx 3D
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Multiclass Linear Classification

@ How can we turn this linear prediction into a one-hot prediction?

@ We can interpret the magnitude of z; as a measure of how much the
model prefers k as its prediction.

o If we do this, we should set

1 i =argmax zx
yi = k (32)
0 otherwise

o Exercise: how does the case of K = 2 relate to the prediction rule in
binary linear classifiers?
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Softmax Regression

@ We need to soften our predictions for the sake of optimization.

@ We want soft predictions that are like probabilities, i.e., 0 < y; < 1 and
2y =1

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

etk
Zk’ e<K’

o Outputs can be interpreted as probabilities (positive and sum to 1)
o If z; is larger than the others, then softmax(z)x = 1 and it behaves like
argmax.

Vi = softmax(zy, ..., 2 )k = (33)

o The inputs z; are called the logits.
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Softmax Regression

o If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function, where the log is applied elementwise.

K
Leg(y,0) = - ) tlogyx = —t7 (logy) (34)

o Just like with logistic regression, we typically combine the softmax and
cross-entropy into a softmax-cross-entropy function
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Linear Classifiers vs. KNN
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Linear Classifiers vs. KNN

o Linear classifiers and KNN have very different decision boundaries:

Linear Classifier K Nearest Neighbours
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Linear Classifiers vs. KNN

@ Advantages of linear classifiers over KNN?

o Robustness to irrelevant features
o Linear classifiers are generally robust to irrelevant or redundant features.

o Scalability
o Linear classifiers can handle high-dimensional feature spaces efficiently and

are more scalable as the number of features increases.

@ The curse of dimensionality!

o Easy updates of the model

o Advantages of KNN over linear classifiers?
o No assumption of data distribution

o Itis a non-parametric method, which means it does not assume any specific
functional form for the decision boundaries.

o Non-linearity

@ KNN can capture complex, non-linear decision boundaries
e Robustness to imbalanced data

o It relies on the local neighborhood and not global statistics.
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Limitations of Linear Classification
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A Few Basic Concepts

@ A hypothesis is a function f : X — 7 that we might use to make
predictions (recall X is the input space and 7 is the target space).
@ The hypothesis space H for a particular machine learning model or
algorithm is a set of hypotheses that it can represent.
e E.g., in linear regression, H is the set of functions that are linear in the
data features
o The job of a machine learning algorithm is to find a good hypothesis
feH
@ The members of H, together with an algorithm’s preference for some
hypotheses of H over others, determine an algorithm’s inductive bias.

o Inductive biases can be understood as general natural patterns or domain
knowledge that helps our algorithms to generalize;

e E.g., linearity, continuity, simplicity (L, regularization) ...
o The so-called No Free Lunch (NFL) theorems assert that if
datasets/problems were not naturally biased, no ML algorithm would be
better than another
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A Few Basic Concepts

e If an algorithm’s hypothesis space H can be defined using a finite set of
parameters, denoted @, we say the algorithm is parametric.
o In linear regression, 8 = (w, b)
e Other examples: logistic regression, neural networks, k-means and
Gaussian mixture models

@ If the members of H are defined in terms of the data, we say that the
algorithm is non-parametric.

o In k-nearest neighbors, the learned hypothesis is defined in terms of the
training data

o Other examples: Gaussian processes, decision trees, support vector
machines, kernel density estimation

o These models can sometimes be understood as having an infinite number
of parameters
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Limits of Linear Classification

@ Some datasets are not linearly separable, e.g. XOR,

\J

@ Visually obvious, but how to show this?
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Showing that XOR is not linearly separable (proof by
contradiction)

o If two points lie in a half-space, the line segment connecting them also
lies in the same half-space.

@ Suppose there were some feasible weights (hypothesis). If the positive
examples are in the positive half-space, then the green line segment must
be as well.

o Similarly, the red line segment must line within the negative half-space

Zo

Iy

o But the intersection can’t lie in both half-spaces. Contradiction!
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Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just like
for linear regression. E.g., for XOR:

B
=
%)
©-
=
L3
<
&)
L)
<
W

= = O O
O = = O

o This is linearly separable.
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In the Future

o Feature maps are hard to design well, so next time we’ll see how to learn
nonlinear feature maps directly using neural networks...
@ The basics of NN will be covered in this class.
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