
Introduction to Machine Learning
Multilayer Perceptrons

Ashley Gao

William & Mary

Feburary 24, 2024

William & Mary CSCI 416 & 516 Feburary 24, 2024 1 / 37

Neural Networks

Here’s an example of two layers in a deep neural network

William & Mary CSCI 416 & 516 Feburary 24, 2024 2 / 37

Inspiration: The Brain

Neurons receive input signals and accumulate voltage.
After some threshold, they will fire spiking responses.

William & Mary CSCI 416 & 516 Feburary 24, 2024 3 / 37

Inspiration: The Brain

For neural nets, we use a much simpler model neuron, or units:

Compare with logistic regression: H = f(w>x + 1)

by throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!

William & Mary CSCI 416 & 516 Feburary 24, 2024 4 / 37

Overview

Design choices so far
Task: regression, binary classification, multi-class classification
Model and Architecture: linear, SVM, decision tree ... and now neural
network
Loss function: squared error, 0-1 loss, cross-entropy, hinge loss
Optimization algorithm: direct solution (calculus and linear algebra),
gradient descent

William & Mary CSCI 416 & 516 Feburary 24, 2024 5 / 37

Multilayer Perceptrons

We can connect lots of units
together into a directed acyclic
graph
This gives us a feed-forward
neural network

This is in contrast to recurrent
neural networks, which have
cycles
More on RNNs later

Typically, units are grouped
together into layers

William & Mary CSCI 416 & 516 Feburary 24, 2024 6 / 37

Multilayer Perceptrons

Each layer connects # input units to " output units
In the simplest case, all input units are connected to all output units

We call this a fully connected layer.
We will consider other layer types later
Note: the inputs and outputs for a layer are distinct from the inputs and
outputs to the network

We need an " × # matrix
The output units a function of the input units

y = 5 (x) = q(]x + b) (1)

A multilayer network consisting of fully connected layers is called a
multilayer perceptron.

William & Mary CSCI 416 & 516 Feburary 24, 2024 7 / 37

Multilayer Perceptrons

Some activation functions:

William & Mary CSCI 416 & 516 Feburary 24, 2024 8 / 37

Multilayer Perceptrons

Some activation functions:

William & Mary CSCI 416 & 516 Feburary 24, 2024 9 / 37

Multilayer Perceptrons

Each layer computes a function, so the network
computes a composition of functions

h (1) = 5 (1) (x) = q(] (1)x + b (1)) (2)

h (2) = 5 (2) (h (1)) = q(] (2)h (1) + b (2)) (3)

...

y = 5 (!) (h (!−1)) (4)

Or more simply:

y = 5 (!) ◦ ... ◦ 5 (1) (x) (5)

William & Mary CSCI 416 & 516 Feburary 24, 2024 10 / 37

Feature Learning

Last layer:
If the task is regression: choose

y = 5 (!) (h (!−1)) = (w (!))>h (!−1) + 1 (!) (6)

If the task is binary classification: choose

y = 5 (!) (h (!−1)) = f((w (!))>h (!−1) + 1 (!)) (7)

So neural nets can be viewed as a way of learning features

William & Mary CSCI 416 & 516 Feburary 24, 2024 11 / 37

Feature Learning

The goal of the neural nets:

William & Mary CSCI 416 & 516 Feburary 24, 2024 12 / 37

Feature Learning

Suppose we are trying to classify images of handwritten digits.
Each image is represented as a vector of 28 × 28 = 784 pixel values

Each first-layer hidden unit computes q(w>
8
x).

It acts as a feature detector
We can visualize w by reshaping it into an image

Here is an example that corresponds to a diagonal stroke

William & Mary CSCI 416 & 516 Feburary 24, 2024 13 / 37

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

Unlike hard-coded feature maps (e.g. in regression models), features
learned by neural networks adapt to patterns in the data

William & Mary CSCI 416 & 516 Feburary 24, 2024 14 / 37

Expressivity

The idea of a hypothesis spaceH is the set of input-output mappings that
can be represented by some model.
Suppose we are deciding between two models �, � with hypothesis space
H�,H�
ifH� ⊆ H�, then � is more expressive than �

Some functions (XOR) can’t be represented by linear classifiers. Are
deep networks more expressive?

William & Mary CSCI 416 & 516 Feburary 24, 2024 15 / 37

Expressivity - Linear Networks

Suppose a layer’s activation function was the identity
The layer just computes an affine transformation of the input
We call this a linear layer

Any sequence of linear layers can be equivalently represented with a
single linear layer

y =] (3)] (2)] (1)︸ ︷︷ ︸
,] ′

x (8)

Deep linear networks can only represent linear functions
Deep linear networks are no more expressive than linear regression

William & Mary CSCI 416 & 516 Feburary 24, 2024 16 / 37

Expressive Power—Non-linear Networks

Multilayer feed-forward neural networks with nonlinear activation
functions are universal function approximators

They can approximate any function arbitrarily well, i.e. for any
5 : X → T there is a sequence 58 ∈ H with 58 → 5

This has been shown for various activation functions (thresholds, logistic,
ReLU, etc.)

Even though ReLU is “almost” linear, it is nonlinear enough

William & Mary CSCI 416 & 516 Feburary 24, 2024 17 / 37

Multilayer Perceptrons

Designing a network to classify XOR
Assume hard threshold activation function

William & Mary CSCI 416 & 516 Feburary 24, 2024 18 / 37

Multilayer Perceptrons

ℎ1 computes I[G1 + G2 − 0.5 > 0]
i.e. G1 OR G2

ℎ2 computes I[G1 + G2 − 1.5 > 0]
i.e. G1 AND G2

H computes I[ℎ1 − ℎ2 − 0.5 > 0] ≡ I[ℎ1 + (1 − ℎ2) − 1.5 > 0]
i.e. ℎ1 AND (NOT ℎ2) ≡ G1 XOR G2

William & Mary CSCI 416 & 516 Feburary 24, 2024 19 / 37

Expressivity

What about the logistic activation function?
You can approximate a hard threshold by scaling up the weights and
biases

This is good: logistic units are differentiable, so we can train them with
gradient descent

William & Mary CSCI 416 & 516 Feburary 24, 2024 20 / 37

Expressivity - What is it good for?

Universality is not necessarily a golden ticket
You may need a very large network to represent a given function
How can you find the weights that represent a given function?

Expressivity can be bad: if you can learn any function, overfitting is
potentially a serious concern!

Recall the polynomial feature mapping. Expressivity increases with the
degree " , eventually allowing multiple perfect fits to the training data

This motivates !2 regularization
Do neural networks overfit and how can we regularize them?

William & Mary CSCI 416 & 516 Feburary 24, 2024 21 / 37

Regularization and Overfitting for Neural Networks

The topic of overfitting (when & how it happens, how to regularize, etc.)
for neural networks is not well-understood, even by researchers

In principle, you can always apply !2 regularization
A common approach is early stopping, or stopping training early, because
overfitting typically as training progresses

Unlike !2 regularization, we don’t add an explicit R()) term to our cost.

William & Mary CSCI 416 & 516 Feburary 24, 2024 22 / 37

Training Neural Networks with Backpropagation

William & Mary CSCI 416 & 516 Feburary 24, 2024 23 / 37

Recap: Gradient Descent

Recall: gradient descent movies opposite the gradient (the direction of
the steepest descent

Weight space for a multilayer neural net: one coordinate for each weight
or bias of the network, in all the layers
Conceptually, not any different from what we’ve seen so far - just higher
dimensional and hard to visualize
We want to define a loss L and compute the gradient of the cost 3J

3w ,
which is the vector of partial derivatives

This is the average of 3J
3w over all the training examples, so in this lecture

we focus on computing 3J
3w

William & Mary CSCI 416 & 516 Feburary 24, 2024 24 / 37

Univariate Chain Rule

Let’s now look at how we compute gradients in neural networks
We have already been using the univariate Chain Rule
Recall: if 5 (G) and G(C) are univariate functions, then:

3

3C
5 (G(C)) = 35

3G

3G

3C
(9)

William & Mary CSCI 416 & 516 Feburary 24, 2024 25 / 37

Univariate Chain Rule

Recall: Univariate logistic least square model

I = FG + 1 (10)

H = f(I) (11)

L =
1
2
(H − C)2 (12)

Let’s compute the loss derivatives: mL
mF

and mL
m1

William & Mary CSCI 416 & 516 Feburary 24, 2024 26 / 37

Univariate Chain Rule

Computing the loss:
I = FG + 1 (13)

H = f(I) (14)

L =
1
2
(H − C)2 (15)

Computing the derivatives:
3L
3H

= H − C (16)

3L
3I

=
3L
3H

3H

3I
=
3L
3H
f′(I) (17)

mL
mF

=
mL
mI

mI

mF
=
mL
mI
G (18)

mL
m1

=
mL
mI

mI

m1
=
mL
mI

(19)

William & Mary CSCI 416 & 516 Feburary 24, 2024 27 / 37

Recap: Gradient Descent

We can diagram out the computation using a computation graph
The nodes represent all the inputs and computed quantities, and the edges
represent which nodes are computed directly as a function of which other
nodes

William & Mary CSCI 416 & 516 Feburary 24, 2024 28 / 37

Univariate Chain Rule

A slightly more convenient notations:
Use H̄ to denote the derivative 3L

3H
, sometimes called the error signal

This emphasizes that the error signals are just values that our program is
computing, rather than a mathematical operations

Computing the loss:
I = FG + 1 (20)

H = f(I) (21)

L =
1
2
(H − C)2 (22)

Computing the derivatives:
H̄ = H − C (23)

Ī = H̄f′(I) (24)

F̄ = ĪG (25)

1̄ = Ī (26)

William & Mary CSCI 416 & 516 Feburary 24, 2024 29 / 37

Multivariate Chain Rule

Suppose we have a function 5 (G, H) and functions G(C) and H(C).

3

3C
5 (G(C), H(C)) = m 5

mG

3G

3C
+ m 5
mH

3H

3C
(27)

Example:

5 (G, H) = H + 4GH , G(C) = cos C, H(C) = C2 (28)

Plug into the Chain Rule:

35

3C
= (H4GH) · (−sin C) + (1 + G4GH) · 2C (29)

William & Mary CSCI 416 & 516 Feburary 24, 2024 30 / 37

Multivariate Chain Rule

In the context of backpropagation:

In our notation:

C̄ = Ḡ
3G

3C
+ H̄ 3H

3C
(30)

William & Mary CSCI 416 & 516 Feburary 24, 2024 31 / 37

Backpropagation

Full backpropagation algorithms:
Let E1, ..., E# be a topological ordering of the computation graph (i.e.
parents come before children).

E# denotes the variable we are trying to compute derivatives of (e.g.
loss)

William & Mary CSCI 416 & 516 Feburary 24, 2024 32 / 37

Backpropagation

Example: logistic least squares regression

William & Mary CSCI 416 & 516 Feburary 24, 2024 33 / 37

Backpropagation

William & Mary CSCI 416 & 516 Feburary 24, 2024 34 / 37

Backpropagation

Backpropagation is the algorithm for efficiently computing gradients in
neural nets
Gradient descent with gradients computed via backpropagation is used to
train the overwhelming majority of neural nets today

Even optimization algorithms much fancier than gradient descent use
backpropagation to compute the gradients

Despite its practical success, backpropagation is believed to be neurally
impossible

William & Mary CSCI 416 & 516 Feburary 24, 2024 35 / 37

Backpropagation

Backpropagation as message passing:

Each node receives a bunch of messages from its children, which it
aggregates to get its error signal. It then passes messages to its parents
This provides modularity since each node has only to know how to
compute derivatives with respect to its arguments, and doesn’t have to
know anything about the rest of the graph

William & Mary CSCI 416 & 516 Feburary 24, 2024 36 / 37

Beyond Feed-forward Neural Networks

We will talk about some of these in the next few lectures

William & Mary CSCI 416 & 516 Feburary 24, 2024 37 / 37

