
Deep Transfer Learning
Recurrent Neural Networks

Ashley Gao

William & Mary

March 3, 2025

William & Mary CSCI 680 March 3, 2025 1 / 43

Ovierview

Autoregressive models such as the neural language model are
memoryless

They can only use information from their immediate context (in this figure,
context length = 1)

If we add connections between the hidden units, it becomes a recurrent
neural network (RNN)

Having a memory lets an RNN use longer-term dependencies:

William & Mary CSCI 680 March 3, 2025 2 / 43

Recurrent Neural Nets

We can think of an RNN as a dynamic system with one set of hidden
units which feed into themselves

The network’s graph would then have self-loops
We can unroll the RNN’s graph by explicitly representing the units at all
time steps.

The weights and biases are shared between all time steps
Except there is typically a separate set of biases for the first time step

William & Mary CSCI 680 March 3, 2025 3 / 43

RNN Examples

Now let’s look at some simple examples of RNNs.
This one sums its inputs

William & Mary CSCI 680 March 3, 2025 4 / 43

RNN Examples

What about this one?

William & Mary CSCI 680 March 3, 2025 5 / 43

Example: Parity

Assume we have a sequence of binary inputs. We will consider how to
determine the parity.

i.e. whether the number of 1’s is even or odd
We can compute parity incrementally by keeping track of the parity of
the input so far.

Each parity bit is the XOR of the input and the previous parity bit
Parity is the classic example of a problem that is hard to solve with a
shallow feed-forward net, but easy to solve with an RNN

William & Mary CSCI 680 March 3, 2025 6 / 43

Example: Parity

Assume we have a sequence of binary inputs. We will consider how to
determine the parity.
Let’s find weights and biases for the RNN so that it computes the parity.
All hidden and output units are binary threshold units.
Strategy:

The output unit tracks the current parity, which is the XOR of the current
input and its previous output
the hidden units help us compute the XOR

William & Mary CSCI 680 March 3, 2025 7 / 43

Example: Parity

Unrolling the parity RNN:

William & Mary CSCI 680 March 3, 2025 8 / 43

Example: Parity

The output unit should compute the XOR of the current input and
previous output:

William & Mary CSCI 680 March 3, 2025 9 / 43

Example: Parity

Let’s use hidden units to help us compute XOR
Have one unit compute AND, and the other one compute OR
Then we can pick weights and biases just like we did for multilayer
perceptrons

William & Mary CSCI 680 March 3, 2025 10 / 43

Example: Parity

We still need to determine hte hidden biases for the first time step
The network should behave as if the previous input was 0
This is represented with the following table

William & Mary CSCI 680 March 3, 2025 11 / 43

Backpropagation through Time
As you can guess, we don’t usually set RNN weights by hand

Instead, we learn them using backpropagation
In particular, we do backpropagation on the unrolled network. This is
known as backpropagation through time.

William & Mary CSCI 680 March 3, 2025 12 / 43

Backpropagation through Time

Here’s the unrolled computation graph. Notice the weight sharing

William & Mary CSCI 680 March 3, 2025 13 / 43

Backpropagation through Time

Backpropagation formulas, according to the computation graph

William & Mary CSCI 680 March 3, 2025 14 / 43

Backpropagation through Time

Now you know how to compute the derivatives using backpropagation
through time
How are RNNs used in applications?

William & Mary CSCI 680 March 3, 2025 15 / 43

Language Model

One way to use RNNs as a language model:

As with our language model, each word is represented as an indicator
vector

The model is trained using cross-entropy loss
This model can learn long-distance dependencies

William & Mary CSCI 680 March 3, 2025 16 / 43

Language Model

We we generate from the model (i.e. compute samples from its
distribution over sentences), the outputs feed back into the network as
inputs

Solve remaining challenges:
The vocabulary can be very large once you include people, places, etc.

It’s computationally difficult to predict distributions over millions of words
How do we deal with words we haven’t seen before?
In some languages (e.g. German) it is hard to define what should be
considered a word

William & Mary CSCI 680 March 3, 2025 17 / 43

Language Model

Another approach is to model text one character at a time

This solves the problem of what to do about previously unseen words
Note that long-term memory is essential at character level

William & Mary CSCI 680 March 3, 2025 18 / 43

Language Model

From Geoff Hinton’s Coursera course, an example of a paragraph
generated by an RNN language model one character at a time:

William & Mary CSCI 680 March 3, 2025 19 / 43

Neural Machine Translation

We’d like to translate, e.g., English to French sentences, and we have
pairs of translated sentences to train on
What’s wrong with the following setup?

The sentences might not be the same length, and the words might not
align perfectly
You might need to resolve ambiguities using information from later in the
sentence

William & Mary CSCI 680 March 3, 2025 20 / 43

Neural Machine Translation

Instead, the network first reads and memorizes the sentence
When it sees the END token, it starts outputting the translation

William & Mary CSCI 680 March 3, 2025 21 / 43

What Can RNNs Compute

In 2014, Google built an RNN that learns to execute simple Python
programs, one character at a time

William & Mary CSCI 680 March 3, 2025 22 / 43

Long Short Term Memory (LSTM)

William & Mary CSCI 680 March 3, 2025 23 / 43

Vanishing and Exploding Gradient Problem

Backpropagated errors multiply at each layer, resulting in exponential
decay (if the derivative is small) or growth (if the derivative is large)
Makes it very difficult train deep networks, or simple recurrent networks
over many time steps
We won’t cover a lot about this topic in this class

William & Mary CSCI 680 March 3, 2025 24 / 43

Long Distance Dependencies

It’s difficult to train a vanilla RNN to retain information over many time
steps
The RNN might have trouble remembering stuff, such as the subject-verb
agreement

William & Mary CSCI 680 March 3, 2025 25 / 43

Long Short Term Memory

LSTM networks, add additional gating units in each memory cell.
Forget gate
Input gate
Output gate

Prevents vanishing/exploding gradient problem and allows network to
retain state information over longer periods of time.

William & Mary CSCI 680 March 3, 2025 26 / 43

LSTM Network Architecture

Here’s the architecture of a typical LSTM network

William & Mary CSCI 680 March 3, 2025 27 / 43

Cell State

Maintains a vector �C that is the same dimensionality as the hidden state,
ℎC

Information can be added or deleted from this state vector via the forget
and input gates

William & Mary CSCI 680 March 3, 2025 28 / 43

Cell State Example

Want to remember the person & number of a subject noun so that it can
be checked to agree with the person and number of verb when it is
eventually encountered.
Forget gate will remove existing information of a prior subject when a
new one is encountered.
Input gate “adds” in the information for the new subject.

William & Mary CSCI 680 March 3, 2025 29 / 43

Forget Gate

Forget gate computes a 0-1 value using a logistic sigmoid output function
from the input, GC . and the current hidden state, ℎC
Multiplicatively combined with cell state, “forgetting” information where
the gate outputs something close to 0

William & Mary CSCI 680 March 3, 2025 30 / 43

Hyperbolic Tangent Units

Tanh can be used as an alternative nonlinear function to the sigmoid
logistic (0-1) output function
Used to produce thresholded output between –1 and 1

William & Mary CSCI 680 March 3, 2025 31 / 43

Input Gate

First, determine which entries in the cell state to update by computing
0-1 sigmoid putput
Then determine what amount to add or substract from these entries by
computing a tanh output (valued -1 to 1) function of the input and hidden
state

William & Mary CSCI 680 March 3, 2025 32 / 43

Updating the Cell State

Cell state is updated by using component-wise vector multiply to "forget"
and vector addition to "input" new information.

William & Mary CSCI 680 March 3, 2025 33 / 43

Output Gate

Hidden state is updated based on a “filtered” version of the cell state,
scaled to –1 to 1 using tanh
Output gate computes a sigmoid function of the input and current hidden
state to determine which elements of the cell state to “output”

William & Mary CSCI 680 March 3, 2025 34 / 43

Overall Network Architecgture

Single or multilayer networks can compute LSTM inputs from problem
inputs and problem outputs from LSTM outputs.

William & Mary CSCI 680 March 3, 2025 35 / 43

LSTM Training

Trainable with backpropagation derivatives such as:
Stochastic gradient descent (randomize order of examples in each epoch)
with momentum (bias weight changes to continue in same direction as last
update)
ADAM optimizer (Kingma and Ma, 2015)

Each cell has many parameters (] 5 ,]8 ,]� ,]>)
Generally requires lots of training data
Requires lots of computation time that exploits GPU clusters

William & Mary CSCI 680 March 3, 2025 36 / 43

General Problems Solved with LSTMs

Sequence labeling
Train with supervised output at each time step computed using a single or
multilayer network that maps the hidden state (ℎC) to an output vector ($C)

Language modeling
Train to predict the next input ($C = �C+1)

Sequence (e.g. text) classification
Train a single or multilayer network that maps the final hidden state (ℎ=) to
an output vector ($).

William & Mary CSCI 680 March 3, 2025 37 / 43

Successful Applications of LSTMs

Speech recognition: Language and acoustic modeling
Sequence labeling

POS Tagging
Image captioning: CNN output vector to sequence
Sequence to sequence

Machine translation
Video captioning (input sequence of CNN fame outputs)

William & Mary CSCI 680 March 3, 2025 38 / 43

Gated Recurrent Unit (GRU)

Alternative RNN to LSTM that uses fewer gates (Cho, et al., 2014)
Combines forget and input gates into “update” gate
Eliminates cell state vector

William & Mary CSCI 680 March 3, 2025 39 / 43

GRU vs. LSTM

GRU has significantly fewer parameters and trains faster
Experimental results comparing the two are still inconclusive, many
problems they perform the same, but each has problems on which they
work better

William & Mary CSCI 680 March 3, 2025 40 / 43

Attention

For many applications, it helps to add “attention” to RNNs
Allows network to learn to attend to different parts of the input at
different time steps, shifting its attention to focus on different aspects
during its processing
Used in image captioning to focus on different parts of an image when
generating different parts of the output sentence
In MT, allows focusing attention on different parts of the source sentence
when generating different parts of the translation
Will be covered in the following lectures!

William & Mary CSCI 680 March 3, 2025 41 / 43

Attention for Image Captioning (Xu, et al. 2015)

Attention shifting based on the words being generated

William & Mary CSCI 680 March 3, 2025 42 / 43

Conclusion

By adding “gates” to an RNN, we can prevent the vanishing/exploding
gradient problem.
Trained LSTMs/GRUs can retain state information longer and handle
long-distance dependencies
Recent impressive results on a range of challenging NLP problems (with
attention)

William & Mary CSCI 680 March 3, 2025 43 / 43

